$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

극한강우량 산정을 위한 대규모 기후 앙상블 모의자료의 적용
Application of a large-scale ensemble climate simulation database for estimating the extreme rainfall 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.55 no.3, 2022년, pp.177 - 189  

김영규 (충남대학교 토목공학과) ,  손민우 (충남대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 저빈도·고강도의 확률강우량 산정을 위해, 대규모 기후 앙상블 모의실험으로 생성된 d4PDF (Data for Policy Decision Making for Future Change)를 적용하는 것을 목적으로 수행되었다. 또한, d4PDF를 이용하여 산정된 확률강우량과 관측 자료 및 빈도해석을 통해서 산정된 확률강우량을 비교함으로써 빈도해석 과정의 적용에 따라 발생하는 불확실성을 분석하였다. 이와 같은 연구는 금산, 임실, 전주, 장수 관측소를 대상으로 수행되었다. d4PDF 자료는 총 50개의 앙상블로 구성되어있으며, 하나의 앙상블은 60년동안의 기상자료를 제공하기 때문에 한 지점에서 3,000개의 연 최대 일 강우량을 수집하는 것이 가능했다. 이와 같은 d4PDF의 특징을 토대로 본 연구는 빈도해석 방법을 적용하지 않고, 3000개의 연 최대 일강수량을 비모수적 접근법(Non-parametric approach)에 따라 규모별로 나열하여, 10년부터 1000년의 재현기간을 갖는 확률강우량을 산정했다. 그 후, 관측 자료와 Gumbel 및 GEV (General extreme value) 분포를 토대로 산정된 확률강우량과의 편차를 산정하였다. 그 결과, 재현기간과 관측 기간의 차이가 증가할수록 이 편차가 증가하였으며, 이 결과는 짧은 관측 기간과 빈도해석의 적용은 재현기간이 증가할수록 신뢰하기 어려운 확률강우량을 제시한다는 것을 의미한다. 반면에, d4PDF는 대규모 표본을 이용함으로써 이와 같은 불확실성을 최소화시켜 합리적인 저빈도·고강도의 확률강우량을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to apply the d4PDF (Data for Policy Decision Making for Future Change) constructed from a large-scale ensemble climate simulation to estimate the probable rainfall with low frequency and high intensity. In addition, this study analyzes the uncertainty caused by the appli...

주제어

표/그림 (9)

참고문헌 (43)

  1. Alam, M.S., and Elshorbagy, A. (2015). "Quantification of the climate change-induced variations in Intensity - Duration - Frequency curves in the Canadian Prairies." Journal of Hydrology, Elsevier, Vol. 527, pp. 990-1005. 

  2. Bandaru, S., Sano, S., Shimizu, Y., Seki, Y., Okano, Y., Sasaki, T., Wada, H., Otsuki, T., and Ito, T. (2020). "Impact of heavy rains of 2018 in western Japan: disaster-induced health outcomes among the population of Innoshima Island." Heliyon, Elsevier, Vol. 6, No. 5, e03942. 

  3. Ben Alaya, M.A., Zwiers, F., and Zhang, X. (2018). "Probable maximum precipitation: Its estimation and uncertainty quantification using bivariate extreme value analysis." Journal of Hydrometeorology, Vol. 19, No. 4, pp. 679-694. 

  4. Bobee, B., Cavadias, G., Ashkar, F., Bernier, J., and Rasmussen, P. (1993). "Towards a systematic approach to comparing distributions used in flood frequency analysis." Journal of Hydrology, Elsevier Vol. 142, No. 1-4, pp. 121-136. 

  5. Christidis, N., Jones, G.S., and Stott, P.A. (2015). "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change, Vol. 5, No. 1, pp. 46-50. 

  6. Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational Hydrological Report. No. 33, Word Meteorological Organization, Geneva, Switzerland. 

  7. Doll, P., Trautmann, T., Gerten, D., Schmied, H.M., Ostberg, S., Saaed, F., and Schleussner, C.F. (2018). "Risks for the global freshwater system at 1.5℃ and 2℃ global warming." Environmental Research Letters, IOP Publishing, Vol. 13, No. 4, pp. 1-15. 

  8. Duan, W., Hanasaki, N., Shiogama, H., Chen, Y., Zou, S., Nover, D., Zhou, B., and Wang, Y. (2019). "Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations." Journal of Climate, Vol. 32, No. 8, pp. 2169-2183. 

  9. Faye. B, Webber, H., Naab, J.B., MacCarthy, D.S., Adam, M., Ewert, F., Lamers, J.P.A., Schleussner, C.F., Ruane, A., Gessner, U., Hoogenboom, G., Boote, K., Shelia, V., Saeed, F., Wisser, D., Hadir, S., Laux, P., and Gaiser, T. (2018). "Impacts of 1.5 versus 2.0℃ on cereal yields in the West African Sudan Savanna." Environmental Research Letters, IOP Publishing, Vol. 13, No. 3, pp. 1-13. 

  10. Felix, M.L., Kim, Y., Choi, M., Kim, J.-C., Do, X.K., Nguyen, T. H., and Jung, K. (2021). "Detailed trend analysis of extreme climate indices in the upper Geum River Basin." Water, MDPI, Vol. 13, No. 22, 3171. 

  11. Fischer, E.M., and Knutti, R. (2015). "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes." Nature Climate Change, Vol. 5, No. 6, pp. 560-564. 

  12. Gumbel, E.J. (1958). Statics of extremes. Columbia University Press, New York, N.Y., U.S. 

  13. Haddad, K., and Rahman, A. (2011). "Selection of the best fit flood frequency distribution and parameter estimation procedure: A case study for Tasmania in Australia." Stochastic Environmental Research and Risk Assessment, Springer, Vol. 25, No. 3, pp. 415-428. 

  14. Haddad, K., Johnson, F., Rahman, A., Green, J., and Kuczera, G. (2015). "Comparing three methods to form regions for design rainfall statistics: two case studies in Australia." Journal of Hydrology, Elsevier, Vol. 527, pp. 62-76. 

  15. Hanittinan, P., Tachikawa, Y., and Ram-Indra, T. (2020). "Projection of hydroclimate extreme indices over the indochina region under climate change using a large single-model ensemble." International Journal of Climatology, RMetS, Vol. 40, No. 6, pp. 2924-2952. 

  16. Hirota, K., Konagai, K., Sassa, K., Dang, K., Yoshinaga, Y., and Wakita, E.K. (2019). "Landslides triggered by the West Japan Heavy Rain of July 2018, and geological and geomorphological features of soaked mountain slopes." Landslides, Springer, Vol. 16, pp. 189-194. 

  17. Hwang, J., Ahn, J., Jeong, C., and Heo, J.-H. (2018). "A study on the variation of design flood due to climate change in the ungauged urban catchment." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 5, pp. 395-404. 

  18. Ishii, M., and Mori, N. (2020). "d4PDF: Large-ensemble and highresolution climate simulations for global warming risk assessment." Progress in Earth and Planetary Science, Springer, Vol. 7, No. 1, pp. 1-22. 

  19. Ji, Z., and Kang, S. (2015). "Evaluation of extreme climate events using a regional climate model for China." International Journal of Climatology, Vol. 35, pp. 888-902. 

  20. Johnson, F., Haddad, K., Rahman, A., and Green, J. (2012). "Application of Bayesian GLSR to estimate sub daily rainfall parameters for the IFD revision project." Hydrology and Water Resources Symposium 2012, EA, Australia, p. 800. 

  21. Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K. Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M. (2015). "The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability." Bulletin of the American Meteorological Society, AMS, Vol. 96, No. 8, pp. 1333-1349. 

  22. Kendall, M.G. (1975). Rank correlation methods (4th edn.) charles griffin. Griffin, London, UK. 

  23. Klemes, V. (1986). "Dilettantism in hydrology: Transition or destiny?" Water Resources Research, WOL, Vol. 22, No. 9S, pp. 177S-188S. 

  24. Klemes, V. (1987). "Hydrological and engineering relevance of flood frequency analysis." Hydrologic Frequency Modeling, Springer, pp. 1-18. 

  25. Klemes, V. (2000). "Tall tales about tails of hydrological distributions. I." Journal of Hydrologic Engineering, Vol. 5, No. 3, pp. 227-231. 

  26. Kumar, N., Poonia, V., Gupta, B.B., and Goyal, M.K. (2021). "A novel framework for risk assessment and resilience of critical infrastructure towards climate change." Technological Forecasting and Social Change, Elsevier, Vol. 165, 120532. 

  27. Lavender, S.L., E Walsh, K.J., Caron, L.-P., King, M., Monkiewicz, S., Guishard, M., Zhang, Q., and Hunt, B. (2018). "Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models." Science Advances, Vol. 4, No. 8, eaat6509. 

  28. Li, S., Mote, P. W., Rupp, D. E., Vickers, D., Mera, R., and Allen, M. (2015). "Evaluation of a regional climate modeling effort for the western United States using a superensemble from weather @home." Journal of Climate, Vo. 28, pp. 7470-7488. 

  29. Mann, H.B. (1945). "Nonparametric tests against trend." Econometrica, Vol. 13, No. 3, pp. 245-259. 

  30. Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., Arakawa, O., Imada, Y., Yoshida, K., Aoyagi, T., Kawase, H., Mori, M., Okada, Y., Shimura, T., Nagatomo, T., Ikeda, M., Endo, H., Masaya, N., Arai, M., Takahashi, C., Tanaka, K., Takemi, T., Tachikawa, Y., Temur, K., Kamae, Y., Watanabe, M., Sasaki, H., Kitoh, A., Takayabu, I., Nakakita, E., and Kimoto, M. (2017). "Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models." Bulletin of the American Meteorological Society, AMS, Vol. 98, No. 7, pp. 1383-1398. 

  31. Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M., Khujanazarov, T., and Nakakita, E. (2019). "Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model." Coastal Engineering Journal, T&F, Vol. 61, No. 3, pp. 295-307. 

  32. Mote, P.W., Allen, M.R., Jones, R.G., Li, S., Mera, R., Rupp, D.E., Salahuddin, A., and Vickers, D. (2016). "Superensemble regional climate modeling for the western United States." Bulletin of the American Meteorological Society, Vol. 97, pp. 203-215. 

  33. Sasaki, H., Kurihara, K., Takayabu, I., and Uchiyama, T. (2008). "Preliminary experiments of reproducing the present climate using the non-hydrostatic regional climate model." Sola, MSJ, Vol. 4, pp. 25-28. 

  34. Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M. (2012). Changes in climate extremes and their impacts on the natural physical environment. Cambridge University Press, Cambridge, UK. 

  35. Sharma, M.A., and Singh, J.B. (2010). "Use of probability distribution in rainfall analysis." New York Science Journal, Vol. 3, No. 9, pp. 40-49. 

  36. Shimpo, A., Takemura, K., Wakamatsu, S., Togawa, H., Mochizuki, Y., Takekawa, M., Tanaka, S., Yamashita, K., Maeda, S., and Kurora, R. (2019). "Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan." Sola, MSJ, Vol. 15A, pp. 13-18. 

  37. Smith, L.C. (2000). "Trends in Russian Arctic river-ice formation and breakup, 1917 to 1994." Physical Geography, Vol. 21, No. 1, pp. 46-56. 

  38. Tanaka, T., Kiyohara, K., and Tachikawa, Y. (2020). "Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan." Journal of Hydrology, Elsevier, Vol. 584, No. February, 124706. 

  39. Tanaka, T., Kobayashi, K., and Tachikawa, Y. (2021). "Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF." Environmental Research Letters, IOP Publishing, Vol. 16, No. 7, 74059. 

  40. Tanaka, T., Tachikawa, Y., Ichikawa, Y., and Yorozu, K. (2018). "Flood risk curve development with probabilistic rainfall modelling and large ensemble climate simulation data: A case study for the Yodo river basin." Hydrological Research Letters, Vol. 12, No. 4, pp. 28-33. 

  41. Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., and Wu, J. (2016). "Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections." Journal of Geophysical Research, Vol. 121, pp. 2110-2129. 

  42. Yang, J.A., Kim, S., Mori, N., and Mase, H. (2018). "Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections." Coastal Engineering, Elsevier, Vol. 142, pp. 1-8. 

  43. Zhang, Y., Xu, Y., Dong, W., Cao, L., and Sparrow, M. (2006). "A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model." Geophysical Research Letter, Vol. 33, L24702. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로