$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현
Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation 원문보기

청정기술 = Clean technology, v.28 no.1, 2022년, pp.63 - 78  

심예림 (경희대학교 공과대학 환경학 및 환경공학과) ,  이나희 (경희대학교 공과대학 환경학 및 환경공학과) ,  정찬혁 (경희대학교 공과대학 환경학 및 환경공학과) ,  허성구 (경희대학교 공과대학 환경학 및 환경공학과 융합공학전공) ,  김상윤 (경희대학교 공과대학 환경학 및 환경공학과 융합공학전공) ,  남기전 (경희대학교 공과대학 환경학 및 환경공학과 융합공학전공) ,  유창규 (경희대학교 공과대학 환경학 및 환경공학과)

초록
AI-Helper 아이콘AI-Helper

첨단 전자산업 폐수 처리시설에서 발생되는 유기 폐수는 고농도의 유기물질 및 20가지 이상의 유독 난분해성 물질을 포함하고 있으며, 이를 효율적으로 처리하는 것은 첨단 전자산업의 당면 과제이다. 따라서, 첨단 전자산업 유기폐수 처리시설을 CPS (Cyber physical system)상 Water digital twin으로 구축하여 COD (Chemical Oxygen Demand), TN (Total Nitrogen), TP (Total Phosphorous) 및 TMAH (Tetramethylammonium hydroxide) 등 유기 오염물질의 제거 효율 평가가 가능한 전자산업 폐수 특화 모델 개발이 필요하다. 본 연구에서는 첨단전자산업 유기폐수 제거 메커니즘에 대한 분해 미생물의 성장과 사멸의 이론적인 반응속도식에 기반한 첨단 전자산업 폐수 특화 활성슬러지 모델(Electronics industrial wastewater activated sludge model, e-ASM)을 개발하였다. 개발한 e-ASM은 전자산업 폐수처리공정에서 발생하는 유기물 산화, 질산화, 및 탈질화 과정뿐만 아니라 TMAH 등 난분해성 유기물질의 분해과정 중 발생하는 질산화미생물의 저해(Inhibition) 작용 등 복잡한 생물학적 분해 메커니즘이 모사 가능하다. 이를 활용하여 실제 전자산업 유기폐수 처리시설을 Water Digital Twin으로 구현하여 CPS (Cyber physical system) 상에서 전자산업 폐수처리장에 폐수 유입 성상에 따라 공정 모델링, 유출수 예측, 공법 선정, 설계 효율 평가 등 다양한 목적으로 활용될 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to trea...

주제어

표/그림 (13)

참고문헌 (57)

  1. Park, H. W. "Trends in Production and Manufacturing Technologies Related to Smart Factories". Journal of the KSME., 57(8), 24-29. (2015). 

  2. Kim, S. J., "The 4th Industrial Revolution and smart manufacturing," Korean J. Constr. Eng. Manag., 18(3), 19-22 (2017). 

  3. National Academy of Engineering of Korea, "A study on the Competencies and Education Required for Chemical Engineering Engineers in the Era of the 4th Industrial Revolution," 1-15 (2018). 

  4. Kim, M. S., "Trends of information and communications industry," KIDIS, No. 43, 3-13 (2020). 

  5. Lee, E. M., "Trends of information and communications industry," KIDIS, No. 20, 52-59 (2012). 

  6. Ministry of Trade, Industry and Energy, "Korean-semiconductor strategy to realize a comprehensive semiconductor power nation," 13 (2021). 

  7. Ministry of Environment, "2020 Generation and Treatment of industrial wastewater," 1-608 (2020). 

  8. Lee, J. S., Kim, S. J. and Gil, D. S., "Treatment system according to wastewater characteristics discharged from each process of semiconductor facilities," K.R. Patent No. 10-2241014 (2020). 

  9. Kim, J. H., & Jun, S. J. "Treatment of phosphorous in sewage and wastewater". KIC News, 14(5), 13-21. (2011). 

  10. Heo, Y. T., "A Study for optimum treatment of TN wastewater including TMAH in LCD industry," Graduate School of Industry, Kyungbook National University Daegu, 13-24 (2011). 

  11. National Institute of Environmental Research, "Guidelines on Best Available Techniques for Environmental Pollution Prevention and Integrated Management in Semiconductor Manufacturing Industry," 1-570 (2020). 

  12. Kim, M. K., "Study on Phosphorus Removal and Denitrification of Etchant Wastewater," M.Sc. Dissertation. Myongji University Graduate School: Environmental Energy Engineering, 33-35 (2014). 

  13. Kang, C. K., "Technological consideration on the domestic production of high quality recycled semiconductor wastewater for industrial purpose," M.Sc. Dissertation. Major Environ. Eng. Dep. Environ. Eng. Grad. Sch. Environ. Public Heal. Youngnam University, 45-50 (2017). 

  14. He, S. Y., Lin, Y. H., Hou, K. Y., & Hwang, S. C. J. "Degradation of dimethyl-sulfoxide-containing wastewater using airlift bioreactor by polyvinyl-alcohol-immobilized cell beads". Bioresour. Technol., 102(10), 5609-5616 (2011). 

  15. Eskenazi, B., Gold, E. B., Lasley, B. L., Samuels, S. J., Hammond, S. K., Wight, S., ... & Schenker, M. B. "Prospective monitoring of early fetal loss and clinical spontaneous abortion among female semiconductor workers". Am. J. Ind. Med., 28(6), 833-846 (1995). 

  16. Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. "Activated sludge models ASM1, ASM2, ASM2d and ASM3". IWA publishing. (2000). 

  17. Yoo, C. K., Kim, M. H., "Design and Environmental/Economic Performance Evaluation of Wastewater Treatment Plants Using Modeling Methodology," Korean Chem. Eng. Res., 46(3), 610-618 (2008). 

  18. Choi, T. H., "A Study on the Optimization of Sewage Treatment Plant Using ASM No.2d Simulation," Ph.D. Dissertation. Dep. Environ. Eng. Grad. Sch. Suwon Univ., 17-19 (2019). 

  19. Lee, H. and Yi, J., "Waste Minimization Technology Trends in Semiconductor Industries," CLEAN TECHNOLOGY 4(1), 6-23 (1998). 

  20. Jeon, E. T., "A Study on the Decision of Process for Nitrogen Removal in Semiconductor Rinsing Wastewater," M.Sc. Dissertation, Hanyang University Graduate School: Environmental Energy Engineering, 1-46 (2011). 

  21. Park, J. Y., Kim, S. J., Choi, K. K., Lee, Y. W., Lee, J. J., Hwang, K. W. and Lee, W. K., "High-Efficient Fluoride Removal and Minimization of Residual Calcium Using Hydrodynamic Cavitation in Inorganic Electronics Wastewater," Environmental Engineering Resarch., 2-3 (2007). 

  22. Lin, S. H. and Kiang, C. D., "Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant," J. Hazard. Mater., 97(1-3), 159-171 (2003). 

  23. Lee, G. C., Park, Y. J., Kang, K. H., Jung, M. O., Ryu, D. H., Jung, S. S., & Lee, W. "Characteristics of organic matters in influents and effluents of sewage treatment plants in Gyeongsanbuk-do". Journal of Korean Society of Environmental Engineers, 43(5), 367-376. (2021). 

  24. Che, T. K., Ni, C. H., Chan, Y. C., and Lu, M. C., "MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling," Water Sci. Technol., 51(6-7), 411-419 (2005). 

  25. Chuang, S. H., Chang, W. C., Huang, Y. H., Tseng, C. C., and Tai, C. C., "Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater," Bioresour. Technol., 102(9), 5461-5465 (2011). 

  26. Huang, H., Liu, J., Zhang, P., Zhnag, D., and Gao, F., "Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation," Chem. Eng. J., 307, 696-706 (2017). 

  27. Chung, S., Chung, J., and Chung, C., "Enhanced electrochemical oxidation process with hydrogen peroxide pretreatment for removal of high strength ammonia from semiconductor wastewater," J. Water Process Eng., 37(4), 101-425 (2020). 

  28. T. Fukushima, L. M. Whang, P. C. Chen, D. W. Putri, M. Y. Chang, Y. J. Wu and Y. C. Lee., "Linking TFT-LCD wastewater treatment performance to microbial population abundance of Hyphomicromium and Thiobacilluss.pp.," Bioresour. Technology., 141, 131-137 (2013). 

  29. Kang, C. K. "Technological consideration on the domestic production of high quality recycled semiconductor wastewater for industrial purpose", M.Sc. Dissertation. Major in Environmental Engineering Department of Environmental Engineering Graduate School of Environment & Public Health Youngnam University, 16-33 (2017). 

  30. Chae, S., "Study for Optimization of Semiconductor Wastewater Treatment Process Including High Concentration of Nitrogen in Denitrificatino Tanks Using GPS-X Simnulator," J. KSET., 16(4), 269-278 (2015). 

  31. Ryu, H. D., Lim, C. S., Kang, M. K., & Lee, S. I. "Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage". J. Hazard. Mater. 221, 248-255 (2012). 

  32. An, M. K., Woo, G. N., Kim, J. H., Kang, M. K., Ryu, H. D. and Lee, S. I., "Optimum Condition for Fluoride Removal Prior to the Application of Struvite Crystallization in Treating Semiconductor Wastewater," Journal of KSWE., 25(6), 916-921 (2009). 

  33. An, B. M., Jeong, J. Y., Kim, J. H. and Park, J. Y., "Treatment of Semiconductor Wastewater using Bipolar ZVI Packed Bed Electrolytic Cell," KSCE Journal., 9-11 (2012). 

  34. Chen, S. Y., Lu, L. A., and Lin, J. G., "Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process," Bioresour. Technol., 210, 88-93 (2016). 

  35. Innocenzi, V., Zueva, S., Prisciandaro, M., De Michelis, I., Di Renzo, A., Di Celso, G. M., & Veglio, F. "Treatment of TMAH solutions from the microelectronics industry: A combined process scheme". J. Water Process Eng., 31, 100780. (2019). 

  36. Ferella, F., Innocenzi, V., Zueva, S., Corradini, V., Ippolito, N. M., Birloaga, I. P., ... & Veglio, F. "Aerobic treatment of waste process solutions from the semiconductor industry: From lab to pilot scale". Sustainability, 11(14), 3923. (2019). 

  37. Heo, S. K., Nam, K. J., Loy-Benitez, and Yoo, C. K., "Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning," IEEE Trans. Ind. Informatics., 17(10), 6925-6934 (2021). 

  38. Cho, B., "Synthesis of Removal Agent and Developement of Treatment Technology on Copper," Journal of the Korean Society of Industry Convergence, 16(2), 35-39 (2013). 

  39. Jeong, G. T., Park, S. H., Park, J. H., Lim, E. T., Bang, S. H., & Park, D. H. "Effect of factors of nitrification process in wastewater treatment". KSBB Journal, 24(3), 296-302. (2009). 

  40. Bowker, R. P. G. and Stensel, D. H., "Design Manual Phosphorus Removal," EPA, 125-126 (1987). 

  41. Park, H., "Improvement of the advanced treatment process in the present sewage treatment plants in Korea," M.Sc. Dissertation. Grad. Sch. Public Heal. Yonsei University, 38-47 (2009). 

  42. Choi H. Y. and Park D. W., "A Study on Oxidation of Tetramethylammonium Hydroxide(TMAH) using UV/Persulfate," J. Korean Soc. Environ. Eng., 42(10), 443-451 (2020). 

  43. B. Liu, K. Yoshinaga, J. Wub, W. Chen, M. Terashima, R. Goel, D. Pangallo and H. Yasui., "Kinetic analysis of biological degradation for tetramethylammonium hydroxide (TMAH) in the anaerobic activated sludge system at ambient temperature," Biochem. Eng. J., 114, 42-49 (2016). 

  44. Wu, Y. J., Irmayani, L., Setiyawan, A. A. and Whang, L. M.,"Aerobic degradation of high tetramethylammonium hydroxide (TMAH) and its impacts on nitrification and microbial community," Chemosphere, 258, 3-11 (2020). 

  45. H. Cheng, C. Liu, Y. Lei, Y. Chiu, J. Mangalidan, C. Wu, Y. Wu and L. Whang., "Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions," Chemosphere, 236, 2-23 (2019). 

  46. Park, S. J., Yoon, T. J., Bae, J. H., Seo, H. J., and H. J. Park, "Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry," Process Biochem., 36(6), 579-589 (2001). 

  47. Park, Y. S., "Study on Computer Simulations of Wastewater Treatment Process for Recovery of Isopropyl Alcohol (IPA) from Wafer Cleaning," Ph.D. Dissertation. Dep. Environ. Eng. Grad. Sch. Suwon University, 1-129 (2017). 

  48. Hockenbury, M. R. and Grady, C. P. L., "Inhibition of nitrification: effects of selected organic compounds," J. Water Pollut. Control Fed., 49(5), 768-777 (1977). 

  49. Steffan, R. J., McClay, K., Vainberg, S., Condee, C. W. and Zhang, D., "Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria," Appl. Environ. Microbiol., 63(11), 4216-4222 (1997). 

  50. Weon, K., "A Study on the Pre-treatment of Biological Processes for High-concentration Semiconductor Cleaning Wastewater," M.Sc. Dissertation. Major in Environmental Engineering Department of Process Engineering Graduate School of industry Chungbuk National University, 55-56 (2018). 

  51. Michelis, D. I., Renzo, D. A., Saraullo, M. and Veglio, F., "Kinetic Study of Aerobic Degradation of Tetramethylammonium Hydroxide (Tmah) Waste Produced in Electronic Industries," DEStech Transactions on Envionment, Energy and Earth Sciences, 27-32 (2017). 

  52. Lei, C., Whang, L., Chen, P., Lei, C., Whang, L. and Chen, P., "Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic / oxic sequencing batch reactors Chemosphere Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater usi," Chemosphere., 81(1), 57-64 (2010). 

  53. Hayes, A. C., Liss, S. N., and Allen, D. G., "Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol," Appl. Environ. Microbiol., 76(16), 5423-5431 (2010). 

  54. Geng, Y., Deng, Y., Chen, F., Jin, H., Tao, K. and Hou, T., "Biodegradation of isopropanol by a solvent-tolerant paracoccus denitrificans strain," Prep. Biochem. Biotechnol., 45(5), 491-499 (2015). 

  55. Lu, C., Chang, K. and Hsu, S., "A model for treating isopropyl alcohol and acetone mixtures in a trickle-bed air biofilter," Process Biochem., 39(12), 1849-1858 (2004). 

  56. Raghuvanshi, S. and Gupta, S., "Growth Kinetics of Acclimated Mixed Culture for Degradation of Isopropyl Alcohol (IPA)," J. Biotechnol. Biomater., 13(2), 3-13 (2013) 

  57. Carrero-Colon, M., Nakatsu, C. H. and Konopka, A., "Effect of nutrient periodicity on microbial community dynamics," Appl. Environ. Microbiol., 72(5), 3175-3183 (2006). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로