최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of the Korean Society of Mathematical Education. Series E: Communications of Mathematical Education, v.36 no.1, 2022년, pp.23 - 38
강정기 (진영중학교)
The study provided a perspective on which readers can see Newton's proof heuristically in order to overcome the difficulty of proof showing 'QT2/QR converges to the latus rectum of ellipse' in the proof of the inverse square law of Newton's Principia. The heuristic perspective is as follows: The sta...
Suh, Boeuk (2021). A study on mathematical investigation activity through using one mathematical fact. Communications of Mathematical Education, 35(2), 193-212.
Ogami Masasi, & Wada Smio (2003). Laws of physics solved with mathematics. translated by Lim Jeong (2005). Seoul: Easybook.
Brackenridge, J. B. (1995) The key to Newton's dynamics. Berkeley: University of Califonia.
Densmore, D. (2003). Newton's Principia: The central argument, translation, notes and expanded proofs (translation and diagrams by Donahue, W. H.). Santa Fe, New Mexico: Green Lion Press.
Fleuriot, J. D., & Paulson, L. (1998). A combination of nonstandard analysis and geometry theorem proving, with application to Newton's principia. Proceedings of the 15 th International Conference on the Automated Deduction, LNAI 1421, 3-16. Springer.
Heath, T. L. (1986). Apollonius of perga: Treatise on conic sections. Cambridge: Cambridge University Press.
Henderson, H. (2005). Of orbits, conics, and grammar. The Physics Teacher, 43(2), 84-87.
Gandt, F. De (1995). Force and geometry in Newton's principia. New Jersey: Princeton University Press.
Guicciardini, Niccolo (1999). Reading the principia. Cambridge: Cambridge University Press.
Pask, C. (2019). Magnificent principia: exploring Isaac Newton's masterpiece. New York: Prometheus Books.
Prentis, J., Fulton, B., Hesse, C., & Mazzino, L. (2007). Elliptical orbit ⇒ 1/r 2 force. The physics teacher, 45(1), 20-25.
Sugimoto, T. (2009). How to present the heart of Newton's Principia to the layperson: a primer on the conic sections without apollonius of perga. Symmetry: Culture and Science, 20(1-4), 113-144.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.