$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

협착된 경동맥내 천이 유동 수치 해석
Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery 원문보기

한국가시화정보학회지= Journal of the Korean society of visualization, v.20 no.1, 2022년, pp.52 - 63  

김동민 (School of Mechanical Engineering, Pusan National University) ,  황진율 (School of Mechanical Engineering, Pusan National University) ,  민두재 (Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine) ,  조원민 (Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine)

Abstract AI-Helper 아이콘AI-Helper

Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, an...

주제어

표/그림 (9)

참고문헌 (49)

  1. Murray, C. J., & Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. The lancet, 349(9064), 1498-1504. 

  2. Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362(6423), 801-809. 

  3. Marshall, I., et al. (2004). MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of biomechanics, 37(5), 679-687. 

  4. Yim, P., et al. (2005). Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics. Studies in health technology and informatics, 113, 412-442. 

  5. Fry, D. L. (1968). Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation research, 22(2), 165-197. 

  6. Groen, H. C., et al. (2007). Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke, 38(8), 2379-2381. 

  7. Qiu, Y., & Tarbell, J. M. (2000). Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng., 122(1), 77-85. 

  8. Loree, H., et al. (1991). Turbulent pressure fluctuations on surface of model vascular stenoses. American Journal of Physiology-Heart and Circulatory Physiology, 261(3), H644-H650. 

  9. Paul, M. C., et al. (2009). Large-Eddy simulation of pulsatile blood flow. Medical engineering & physics, 31(1), 153-159. 

  10. Tarbell, J. M., et al. (2014). Fluid mechanics, arterial disease, and gene expression. Annual review of fluid mechanics, 46, 591-614. 

  11. Giddens, D., et al. (1993). The role of fluid mechanics in the localization and detection of atherosclerosis. Journal of biomechanical engineering, 115(4B), 588-594. 

  12. Caro, C., et al. (1969). Arterial wall shear and distribution of early atheroma in man. Nature, 223(5211), 1159-1161. 

  13. Ku, D. N., et al. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 5(3), 293-302. 

  14. Zarins, C. K., et al. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation research, 53(4), 502-514. 

  15. Khodarahmi, I. (2015). Comparing velocity and fluid shear stress in a stenotic phantom with steady flow: phase-contrast MRI, particle image velocimetry and computational fluid dynamics. Magnetic Resonance Materials in Physics, Biology and Medicine, 28(4), 385-393. 

  16. Mittal, R., et al. (2003). Numerical study of pulsatile flow in a constricted channel. Journal of Fluid Mechanics, 485, 337-378. 

  17. Grinberg, L., et al. (2009). Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Annals of biomedical engineering, 37(11), 2200-2217. 

  18. Lui, M., et al. (2020). On the turbulence modeling of blood flow in a stenotic vessel. Journal of biomechanical engineering, 142(1). 

  19. Johari, N., et al. (2019). Disturbed flow in a stenosed carotid artery bifurcation: Comparison of RANS-based transitional model and LES with experimental measurements. International Journal of Applied Mechanics, 11(04), 1950032. 

  20. Willert, C. E., et al. (2018). Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer. Experimental Thermal and Fluid Science, 91, 320-328. 

  21. Lenaers, P., et al. (2012). Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Physics of fluids, 24(3), 035110. 

  22. Wu, X., et al. (2020). Negative skin friction during transition in a zero-pressure-gradient flat-plate boundary layer and in pipe flows with slip and no-slip boundary conditions. Journal of Fluid Mechanics, 887. 

  23. Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC press 

  24. Kang, T., et al. (2021). Effects of progressive carotid stenosis on cerebral haemodynamics: aortic-cerebral 3D patient-specific simulation. Engineering Applications of Computational Fluid Mechanics, 15(1), 830-847. 

  25. Updegrove, A., et al. (2017). SimVascular: an open source pipeline for cardiovascular simulation. Annals of biomedical engineering, 45(3), 525-541. 

  26. Gharahi, H., et al. (2016). Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. International journal of advances in engineering sciences and applied mathematics, 8(1), 46-60. 

  27. P., I. N. S. M. A. H. (2000). Comparison of the ECST, CC, and NASCET grading methods and ultrasound for assessing carotid stenosis. Medicina 2018, 54(3), 42;. 

  28. Chaturvedi, S., et al. (1997). Cerebral angiography practices at US teaching hospitals: implications for carotid endarterectomy. Stroke, 28(10), 1895-1897. 

  29. Gagne, P. J., et al. (1996). Can the NASCET technique for measuring carotid stenosis be reliably applied outside the trial? Journal of vascular surgery, 24(3), 449-456. 

  30. Lee, S. E., et al. (2008). Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech, 41(11), 2551-2561. 

  31. Likittanasombut, P., et al. (2006). Volume Flow Rate of Common Carotid Artery Measured by Doppler Method and Color Velocity Imaging Quantification (CVI-Q). Journal of Neuroimaging, 16(1), 34-38. 

  32. Holdsworth, D., et al. (1999). Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiological measurement, 20(3), 219. 

  33. Eicke, B. M., & Tegeler, C. H. (1995). Ultrasonic quantitative flow volumetry of the carotid arteries: initial experience with a color flow M-mode system. Cerebrovascular Diseases, 5(2), 145-149. 

  34. Ackroyd, N., et al. (1986). Quantitative common carotid artery blood flow: prediction of internal carotid artery stenosis. Journal of vascular surgery, 3(6), 846-853. 

  35. Buijs, P. C., et al. (1998). Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology, 209(3), 667-674. 

  36. Bogren, H. G., et al. (1994). Carotid and vertebral artery blood flow in left-and right-handed healthy subjects measured with MR velocity mapping. Journal of Magnetic Resonance Imaging, 4(1), 37-42. 

  37. Mittal, R., et al. (2003). Numerical study of pulsatile flow in a constricted channel. Journal of Fluid Mechanics, 485, 337-378. 

  38. Adrianzen Alvarez, D. R. (2016). Influence of Outlet Boundary Conditions on Cerebrovascular Aneurysm Hemodynamics. 

  39. Alimohammadi, M., et al. (2014). Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Medical engineering & physics, 36(3), 275-284. 

  40. Kefayati, S., & Poepping, T. L. (2013). Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Medical engineering & physics, 35(7), 898-909. 

  41. Poepping, T. L., et al. (2002). An in vitro system for Doppler ultrasound flow studies in the stenosed carotid artery bifurcation. Ultrasound in medicine & biology, 28(4), 495-506. 

  42. Oates, C., et al. (2009). Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom. European Journal of Vascular and Endovascular Surgery, 37(3), 251-261. 

  43. Plesniak, M. W., & Bulusu, K. V. (2016). Morphology of Secondary Flows in a Curved Pipe With Pulsatile Inflow. Journal of Fluids Engineering, 138(10). 

  44. Ford, M. D., et al. (2008). Is flow in the common carotid artery fully developed? Physiol Meas, 29(11), 1335-1349. 

  45. Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94. 

  46. Basavaraja, P., et al. (2017). Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. journal of mechanics in medicine and biology, 17(02), 1750037. 

  47. Markl, M., et al. (2010). In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circulation: Cardiovascular Imaging, 3(6), 647-655. 

  48. Ethier, C. R., & Simmons, C. A. (2007). Introductory biomechanics: from cells to organisms. Cambridge University Press 

  49. Lee, S.-W., & Steinman, D. A. (2007). On the relative importance of rheology for image-based CFD models of the carotid bifurcation. 273-278. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로