$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석
Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation 원문보기

한국방재안전학회논문집 = Journal of Korean Society of Disaster and Security, v.15 no.1, 2022년, pp.1 - 12  

이기하 (경북대학교 미래과학기술융합학과) ,  연민호 (경북대학교 미래과학기술융합학과) ,  김영훈 (경북대학교 미래과학기술융합학과) ,  정성호 (경북대학교 미래과학기술융합학과)

초록
AI-Helper 아이콘AI-Helper

수문모형의 최적 매개변수를 추정하기 위해서 자동최적화기법이 자주 이용되며, 이러한 최적화기법관측값과 모의값의 오차를 최소로 하기 위해 목적함수를 필요로 한다. 다만, 다양한 목적함수 선택에 따라 각기 다른 수문응답 결과를 제공할 수 있다. 본 연구에서는 국내·외에서 사용되는 다양한 목적함수를 활용하여 단기 강우-유출 수문모형의 매개변수를 추정하고, 목적함수에 따른 수문곡선의 재현성을 평가하고, 적정 목적함수를 제시하고자 하였다. 강우-유출 모형으로는 현행 홍수예보에서 유역 유출모의에 활용되고 있는 집중형 수문모형인 저류함수모형을 선택하였으며, 모형의 5개 매개변수에 대해서 전역최적화기법인 SCE-UA를 적용하여 모형의 최적매개변수를 추정하였다. 목적함수별 수문곡선의 재현성 평가를 위해 용담댐 상류유역인 천천유역을 대상으로 9개의 강우사상을 추출하였으며, 7개의 목적함수를 선택하여 개별 강우사상별로 저류함수모형의 매개변수를 추정하고, 이를 활용한 모의 수문곡선의 재현성을 비교·분석하였다. 분석결과, 목적함수에 오차제곱을 포함하고 있는 RMSE, NSE, RSR이 Event 7을 제외한 모든 강우사상에 대해 가장 높은 정확도를 나타냈으며, 관측유량과 모의유량의 오차만을 반영한 ABIAS의 경우, 정확도가 가장 낮은 것으로 분석되었다. 또한, 관측유량 대비 오차 항을 포함하고 있는 PBIAS 및 VE의 경우 역시, 상기 3개(RMSE, NSE, RSR)의 결과와 유사하게 비교적 안정적인 수문곡선 재현성을 보여주었다. 다만, 고유량과 저유량을 동시에 고려하여 이에 민감한 매개변수를 조정하도록 개발된 MIA의 경우, 수문곡선 재현성 성능이 매우 낮은 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various obje...

주제어

표/그림 (7)

참고문헌 (22)

  1. ASCE. (1993). Criteria for Evaluation of Watershed Models. Journal of Irrigation and Drainage Engineering. 119(3): 429-442. 

  2. Beven, K. and Binley, A. (1992). The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrological Processes. 6(3): 279-298. 

  3. Chung, G. H., Park, H. S., Sung, J. Y., and Kim, H. J. (2012). Determination and Evaluation of Optimal Parameters in Storage Function Method using SCE-UA. Journal of Korea Water Resources Association. 45(11): 1169-1186. 

  4. Chung, G. H. and Park, H. S. (2013). Modification of the Fixed Coefficient Method for the Parameter Estimation of Storage Function Method. Journal of Korea Water Resources Association. 46(1): 73-85. 

  5. Criss, R. E. and Winston, W. E. (2008). Do Nash Values Have Value? Discussion and Alternate Proposals. Hydrological Processes: An International Journal. 22(14): 2723-2725. 

  6. Duan, Q., Sorooshian, S., and Gupta, V. K. (1992). Effective and Efficient Global Optimization for Conceptual Rainfallrunoff Models. Water Resources Research. 28(4): 1015-1031. 

  7. Duan, Q. Y., Gupta, V. K., and Sorooshian, S. (1993). Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization. Journal of Optimization Theory and Applications. 76(3): 501-521. 

  8. Gupta, H. V., Sorooshian, S., and Yapo, P. O. (1998). Toward Improved Calibration of Hydrologic Models: Multiple and Noncommensurable Measures of Information. Water Resources Research. 34(4): 751-763. 

  9. Gupta, H., Thiemann, M., Trosset, M., and Sorooshian, S. (2003). Reply to Comment by K. Beven and P. Young on 'Bayesian Recursive Parameter Estimation for Hydrologic Models'. Water Resources Research. 39(5): 1117. 

  10. Hwang, S. H., Ham, D. H., and Kim, J. H. (2012). A New Measure for Assessing the Efficiency of Hydrological Data-driven Forecasting Models. Hydrological Sciences Journal. 57(7): 1257-1274. 

  11. Jain, S. K. and Sudheer, K. P. (2008). Fitting of Hydrologic Models: A Close Look at the Nash-Sutcliffe index. Journal of Hydrologic Engineering. 13(10): 981-986. 

  12. Krause, P., Boyle, D. P., and Base, F. (2005). Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences. 5: 89-97. 

  13. Lee, D. E., Kim, Y. S., Yu, W. S., and Lee, G. H. (2017). Evaluation on Applicability of On/Off-line Parameter Calibration Techniques in Rainfall-runoff Modeling. Journal of Korea Water Resources Association. 50(4): 241-252. 

  14. Legates, D. R. and McCabe Jr, G. J. (1999). Evaluating the Use of "Goodness-of-fit" Measures in Hydrologic and Hydroclimatic Model Validation. Water resources research. 35(1): 233-241. 

  15. McCuen, R. H., Knight, Z., and Cutter, A. G. (2006). Evaluation of the Nash-Sutcliffe efficiency index. Journal of hydrologic engineering. 11(6): 597-602. 

  16. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE. 50(3): 885-900. 

  17. Schaefli, B. and Gupta, H. V. (2007). Do Nash Values Have Value?. Hydrological Processes. 21: 2075-2080. 

  18. Shin, C. K., Cho, H. S., Jung, K. S., and Kim, J. H. (2004). Grid based Rainfall-runoff Modelling using Storage Funcion Method. Journal of Korea Water Resources Association. 37(11): 969-978. 

  19. Singh, J., Knapp, H. V., and Demissie, M. (2004). Hydrologic Modeling of the Iroquois River Watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. 

  20. Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S. (2003). Effective and Efficient Algorithm for Multiobjective Optimization of Hydrologic Models. Water Resources Research. 39(8): 1214. 

  21. Wang, Q. J. (1991). The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-runoff Models. Water Resources Research. 27(9): 2467-2471. 

  22. Yapo, P. O., Gupta, H. V., and Sorooshian, S. (1998). Multi-objective Global Optimization for Hydrologic Models. Journal of hydrology. 204(1-4): 83-97. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로