$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

진해 당동만의 성층과 빈산소에 따른 퇴적물내 혐기층 발달이 메탄 거동에 미치는 영향 연구
A Study on the Effect of the Development of Anaerobic Respiration Processes in the Sediment with the Water-column Stratification and Hypoxia and Its Influence on Methane at Dangdong Bay in Jinhae, Korea 원문보기

Ocean and polar research, v.44 no.1, 2022년, pp.1 - 11  

김서영 (부산대학교 자연과학대학 해양학과) ,  안순모 (부산대학교 자연과학대학 해양학과)

Abstract AI-Helper 아이콘AI-Helper

Hypoxia can affect water-atmosphere methane flux by controlling the production and consumption processes of methane in coastal areas. Seasonal methane concentration and fluxes were quantified to evaluate the effects of seasonal hypoxia in Dangdong Bay (Gyeongsangnamdo, Jinhae Bay, South Korea). Sedi...

주제어

표/그림 (7)

참고문헌 (63)

  1. Amouroux D, Roberts G, Rapsomanikis S, Andreae MO (2002) Biogenic gas (CH 4 , N 2 O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar Coast Shelf S 54(3):575-587 

  2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54-62 

  3. Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cy 8(4):465-480 

  4. Bange HW, Bergmann K, Hansen HP, Kock A, Koppe R, Malien F, Ostrau C (2010) Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernforde Bay, SW Baltic Sea). Biogeosciences 7:1279-1284 

  5. Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288(6):575-603 

  6. Boynton WR, Kemp WM, Barnes JM, Cowan JLW, Stammerjohn SE, Matteson LL, Garber JH (1991) Long-term characteristics and trends of benthic oxygen and nutrient fluxes in the Maryland portion of Chesapeake Bay. In: Mihursky JA, Chaney A (eds) New perspectives in the chesapeake system: a research and management partnership. Chesapeake Research Concortium Publication, Charlottesville, pp 339-354 

  7. Brady DC, Testa JM, Di Toro DM, Boynton WR, Kemp WM (2013) Sediment flux modeling: calibration and application for coastal systems. Estuar Coast Shelf S 117:107-124 

  8. Cai WJ, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52(2):123-131 

  9. Chanton JP, Martens CS, Goldhaber MB (1987) Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim Cosmochim Ac 51(5):1187-1199 

  10. Clark JF, Schlosser P, Simpson HJ, Stute M, Wanninkhof R, Ho DT (1995) Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: Jahne B, Monahan E (eds) Air-water gas transfer. AEON Verlag & Studio, Hanau, pp 785-800 

  11. De Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers 1. Limnol Oceanogr 32(3):716-722 

  12. De Angelis MA, Scranton MI (1993) Fate of methane in the Hudson River and estuary. Global Biogeochem Cy 7(3):509-523 

  13. Dean JF, Middelburg JJ, Rockmann T, Aerts R, Blauw LG, Egger M, Slomp CP (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56(1):207-250 

  14. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926-929 

  15. Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Cagatay MN, Wenzhofer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4):1215-1259 

  16. Froelich P, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Ac 43(7):1075-1090 

  17. Gelesh L, Marshall K, Boicourt W, Lapham L (2016) Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnol Oceanogr 61(S1):S253-S266 

  18. Higashino M, Clark JJ, Stefan HG (2009) Pore water flow due to near-bed turbulence and associated solute transfer in a stream or lake sediment bed. Water Resour Res 45(12):12414 

  19. Higashino M, Stefan HG (2011) Dissolved oxygen demand at the sediment-water interface of a stream: near-bed turbulence and pore water flow effects. J Environ Eng 137(7):531-540 

  20. Hwang CY, Cho BC (2005) Measurement of net photosynthetic rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. The Sea 10(1):31-37 

  21. Jiang LQ, Cai WJ, Wang Y (2008) A comparative study of carbon dioxide degassing in river-and marine-dominated estuaries. Limnol Oceanogr 53(6):2603-2615 

  22. Jorgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) 1. Limnol Oceanogr 22(5):814-832 

  23. Kampbell DH, Vandegrift SA (1998) Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique. J Chromatogr Sci 36(5):253-256 

  24. Keeling RF, Kortzinger A, Gruber N (2009) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199-229 

  25. Kim SY, Lee YH, Kim YS, Shim JH, Ye MJ, Jeon JW, Jun SH (2012) Characteristics of marine environmental in the hypoxic season at Jinhae Bay in 2010. Kor J Nat Conserv 6(2):115-129 

  26. Lee J, Kim SG, An S (2017) Dynamics of the physical and biogeochemical processes during hypoxia in Jinhae Bay, South Korea. J Coastal Res 33(4):854-863 

  27. Lee J, Park KT, Lim JH, Yoon JE, Kim IN (2018) Hypoxia in Korean coastal waters: a case study of the natural Jinhae Bay wand artificial Shihwa Bay. Front Mar Sci 5:70 

  28. Lee JS, Kim KH, Yu J, Jung RH, Ko TS (2003). Estimation of oxygen consumption rate and organic carbon oxidation rate at the sediment/water interface of coastal sediments in the South Sea of Korea using an oxygen microsensor. The Sea 8(4):392-400 

  29. Lichtschlag A, Donis D, Janssen F, Jessen GL, Holtappels M, Wenzhofer F, Boetius A (2015) Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences 12:5075-5092 

  30. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard (ed) The role of air-sea exchange in geochemical cycling. Springer, Dordrecht, pp 113-127 

  31. Lukawska-Matuszewska K, Graca B, Broclawik O, Zalewska T (2019) The impact of declining oxygen conditions on pyrite accumulation in shelf sediments (Baltic Sea). Biogeochemistry 142(2):209-230 

  32. Luther GW, Giblin A, Howarth RW, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim Ac 46(12):2665-2669 

  33. Martens CS, Klump JV (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim Cosmochim Ac 48(10):1987-2004 

  34. Marvin-DiPasquale MC, Boynton WR, Capone DG (2003) Benthic sulfate reduction along the Chesapeake Bay central channel. II. Temporal controls. Mar Ecol-Prog Ser 260:55-70 

  35. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences Discuss 6(2):1273-1293 

  36. Middelburg JJ, Nieuwenhuize J, Iversen N, Hogh N, De Wilde H, Helder W, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59(1-2):95-119 

  37. Moeslundi L, Thamdrup B, Jorgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27(2):129-152 

  38. Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343(6170):493-495 

  39. Pamatmat MM (1971) Oxygen consumption by the seabed IV. Shipboard and laboratory experiments. Limnol Oceanogr 16(3):536-550 

  40. Park YP, Cha J, Song B, Huang Y, Kim S, Kim S, Jo E, Fortin S, Am S (2020) Total microbial activity and sulfur cycling microbe changes in response to the development of hypoxia in a shallow estuary. Ocean Sci J 55(1):165-181 

  41. Rabalais NN, Turner RE, Wiseman WJ, Boesch DF (1991) A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985-1988. Geol Soc 58(1):35-47 

  42. Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1(1):1-2 

  43. Rasmussen H, Jorgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol-Prog Ser 81(3):289-303 

  44. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486-513 

  45. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61(3):261-293 

  46. Ryu J, AN S (2016) Seasonal variation of dissolved methane concentration and flux in the Nakdong Estuary. The Sea 21(3):91-102 

  47. Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cy 13(2):463-474 

  48. Sansone FJ, Rust TM, Smith SV (1998) Methane distribution and cycling in Tomales Bay, California. Estuaries 21(1):66-77 

  49. Seitaj D, Sulu-Gambari F, Burdorf LD, Romero-Ramirez A, Maire O, Malkin SY, Meysman FJ (2017) Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnol Oceanogr 62(2):452-473 

  50. Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115(4):451-460 

  51. Shin SH, Jo JG, Kim YJ, Jang SY (2015) Variation of benthic environments and macrobenthic communities in hypoxic waters of Jinhae Bay, 2015. Kor Soc Mar Environ Energ 18(3):179-188 

  52. Soetaer K, Herman PM, Middelburg JJ (1996) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41(8):1651-1668 

  53. Steinberger N, Hondzo M (1999) Diffusional mass transfer at sediment-water interface. J Environ Eng 125(2):192-200 

  54. Steinle L, Maltby J, Treude T, Kock A, Bange HW, Engbersen N, Niemann H (2017) Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences 14:1631-1645 

  55. Thamdrup B, Fossing H, Jorgensen BB (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Ac 58(23):5115-5129 

  56. Torres-Alvarado R, Ramirez-Vives F, Fernandez FJ, Barriga-Sosa I (2005) Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle. Hidrobiologica 15(3):327-349 

  57. Turner RE, Rabalais NN, Justic D (2006) Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar Pollut Bull 52(2):139-148 

  58. Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments 1. Limnol Oceanogr 27(3):552-556 

  59. Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJ (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cy 14(4):1205-1217 

  60. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res-Oceans 97(C5):7373-7382 

  61. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr 12(6):351-362 

  62. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21(1):78-80 

  63. Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F. (2008). Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91(1):71-84 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로