$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

안개 및 강우 상황에서의 LiDAR 검지 성능 변화에 대한 연구
A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate 원문보기

韓國ITS學會 論文誌 = The journal of the Korea Institute of Intelligent Transportation Systems, v.21 no.2, 2022년, pp.101 - 115  

김지윤 (한국건설기술연구원 도로교통연구본부) ,  박범진 (한국건설기술연구원 도로교통연구본부)

초록

본 연구는 LiDAR가 악천후 시 물체를 검지하는 성능을 맑은 날과 비교하여 알아보았다. 악천후를 재현하는 실험은 안개 시정거리를 200m부터 50m까지 4단계로 강우량은 20(mm/h)와 50(mm/h)로 나누어 수행하였다. LiDAR를 차량에 장착하여 실제 도로 위를 주행하여 진행하였고, 사람 모양의 표지판을 대상으로 측정거리별로 분석하였다. 성능지표는 Number of Points Cloud와 Intensity를 활용하였고, T-Test로 성능의 차이를 통계적으로 알아보았다. 연구결과, 맑은 날 대비 LiDAR 검지 성능은 강우량 20mm/h, 안개시정 200m 이하, 강우량 50mm/h, 안개시정 150m 이하, 100m 이하, 50m 이하의 순으로 성능저하가 발생하였다. 성능의 저하는 흰색보다는 검은색일 때, 측정거리가 멀어질수록 크게 발생하였다. 하지만, 흰색은 본 실험에서 최악의 상황으로 판단되는 시정 50m에서도 측정거리 10m에서는 성능의 차이가 미미하였고, 통계적으로는 차이가 없었다. 성능검증 결과는 향후 센서의 시인성을 제고하는 도로시설물 제작에 활용될 것이 기대된다.

Abstract AI-Helper 아이콘AI-Helper

This study compared the performance of LiDAR in detecting objects in rough weather with that in clear weather. An experiment that reproduced rough weather divided the fog visibility into four stages from 200 m to 50 m and controlled the rainfall by dividing it into 20 mm/h and 50 mm/h. The number of...

주제어

참고문헌 (18)

  1. Beraldin, J. A., Francois, B. and Uwe, L.(2010), "Laser Scanning technology", In Vosselman, G. and Mass, H. G. eds. Airborn and terrestrial laser scanning, Caithness, Whittles Publishing, pp.1-42. 

  2. Bloomberg, https://www.bloomberg.com/news/articles/2018-09-17/self-driving-cars-still-can-t-handle-bad-weather, 2022.02.17. 

  3. Goodin, C., Carruth, D., Doude, M. and Hudson, C.(2019), "Predicting the Influence of Rain on LiDAR in ADAS", Electronics, vol. 8, no. 1, p.89, doi: 10.3390/electronics8010089 

  4. Guan, H., Li, J. and Yu, Y.(2016), "Use of mobile LiDAR in Road information inventory: A review", International Journal of Image and Data Fusion, vol. 7, no. 3, pp.219-242. 

  5. Herrmann, A., Brenner, W. and Stodler, R.(2019), Autonomous Driving: How to driverless Revolution Will Change the World, Emerald Publishing, pp.113-128. 

  6. Jeon, H. and Kim, J.(2021), "Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI", Journal of Korea Institute Intelligent Transportation System, vol. 20, no. 3, pp.34-46. 

  7. Kim, J., Park, B., Roh, C. and Kim, Y.(2021), "Performance of Mobile LiDAR in the Real Road Driving Conditions", Sensors, vol. 21, no. 22, p.7461, doi: 10.3390/s22010106 

  8. Korea Institute Construction and Technology(2021), Improved Road Infrastructures to Strengthen Driving Safety of Automated Driving Car, pp.39-55. 

  9. Korea Transport Safety Authority, https://www.kotsa.or.kr, 2022.02.16. 

  10. Kutila, M., Pyykonen, P., Ritter, W., Sawade, O. and Schaufele, B.(2016), "Automative LiDAR Sensor Development Scenarios for Harsh Weather Conditions", IEEE 19th International Conference on Intelligent Transportation Systems(ITSC), Rio De Janeiro, Brazil, IEEE, Newyork, pp.265-270. 

  11. Lee, H. and Suh, M.(2019), "Objective Classification of Fog Type and Analysis of Fog Characteristics Using Visibility Meter and Satellite Observation Data over South Korea", Atmosphere, vol. 29, no. 5, pp.639-658. 

  12. Lee, S., Park, W., Jin, M. and Kim, Y.(2020), "Relationship Between Pavement Marking Types and Visibility Distance Under Adverse Weather Conditions", International Journal of Highway Engineering, vol. 22, no. 5, pp.85-93. 

  13. Li, Y. and Ibanez-Guzman, J.(2020), "Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems", IEEE Signal Processing Magazine, vol. 37, no. 4, pp.50-61. 

  14. Montalban, K., Reymann, C., Atchuthan, D., Dupouy, P. E., Riviere, N. and Lacroix, S.(2021), "A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog", Atmosphere, vol. 12, no. 6, p.738, doi: 10.3390/atmos12060738 

  15. Park, B. and Kim, J.(2021), "A Study of LiDAR's Performance Change by Road Sign's Color and Climate", Journal of Korea Institute Intelligent Transportation System, vol. 20, no. 6, pp.228-241. 

  16. Roh, C. G. and Im, I.(2020), "A review on handicap sections and situations to improve driving safety of automated vehicles", Sustainability, vol. 12, no. 14, p.5509, doi: 10.3390/su12145509 

  17. Tang, L., Shi, Y., He, Q., Sadek, A. W. and Qiao, C.(2020), "Performance Test of Autonomous Vehicle Lidar Sensors Under Different Weather Conditions", Transportation Research Record, vol. 2674, no. 1, pp.319-329. 

  18. YTN, https://www.ytn.co.kr/_ln/0108_201607051237366868, 2022.02.17. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로