$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Workability and compressive behavior of PVA-ECC with CNTs

Geomechanics & engineering, v.29 no.3, 2022년, pp.311 - 320  

Lee, Dongmin (Department of Civil Engineering, Kyungpook National University) ,  Lee, Seong-Cheol (Department of Civil Engineering, Kyungpook National University) ,  Yoo, Sung-Won (Department of Civil and Environmental Engineering, Gachon University)

Abstract AI-Helper 아이콘AI-Helper

TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers ha...

주제어

참고문헌 (54)

  1. ASTM C469-02 (2002), Standard specification for testing method for static modulus of elasticity and poison's ratio of concrete in compression. 2002 Annual Book of ASTM Standards, American Society for Testing and Material, Philadelphia, Pennsylvania. 

  2. Bera, A.K. and Chakraborty, S. (2015), "Compaction and unconfined compressive strength of sand modified by class F fly ash", Geomech. Eng., 9(2), 261-273. https://doi.org/10.12989/gae.2015.9.2.261. 

  3. Bischoff, P.H. (2003), "Tension stiffening and cracking of steel fiber-reinforced concrete", J. Mater. Civil Eng. - ASCE, 15(2), 174-182. 

  4. Camacho M. del C., Galao, O., Baeza F., Zornoza E. and Garces, P. (2014), "Mechanical properties and durability of CNT cement composites", Materials, 7(3), 1640-1651. https://doi.org/10.3390/ma7031640 

  5. Campillo, I., Dolado, J.S. and Porro, A. (2004), "High-performance nanostructured materials for construction", Special Publication-Royal Society of Chemistry, 292, 215-226. https://doi.org/10.1039/9781847551528-00215. 

  6. Caratelli, A., Meda, A., Rinaldi, Z. and Romualdi, P. (2011), "Structural behaviour of precast tunnel segments in fiber reinforced concrete", Tunn. Undergr. Sp. Tech., 26(2), 284-291. https://doi.org/10.1016/j.tust.2010.10.003. 

  7. Chen, G.H., Zou, J.F. and Qian, Z.H. (2019), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097. 

  8. Chen, S.J., Collins, F.G., MacLeod, A.J.N., Pan, Z., Duan, W.H., and Wang, C.M. (2011), "Carbon nanotube-cement composites: A retrospect", The IES J. part a: Civil Struct. Eng., 4(4), 254-265. https://doi.org/10.1080/19373260.2011.615474. 

  9. Collins, F., Lambert, J. and Duan, W.H. (2012), "The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013. 

  10. Deluce, J.R., Lee, S.C. and Vecchio, F.J. (2014), "Crack model for steel fiber-reinforced concrete members containing conventional reinforcement", ACI Struct. J., 111(1), 93-102. 

  11. Demirboga, R. (2003), "Influence of mineral admixtures on thermal conductivity and compressive strength of mortar", Energ. Build., 35(2), 189-192. https://doi.org/10.1016/S0378-7788(02)00052-X 

  12. Gettu, R., Barragan, B., Garcia, T., Ramos, G., Fernandez, C. and Oliver, R. (2004), "Steel fiber reinforced concrete for the Barcelona metro line 9 tunnel lining", Proceedings of the 6th RILEM Symposium on FRC, Varenna, Italy, RILEM PRO. 

  13. Hawreen, A., Bogas, J.A. and Dias, A.P.S. (2018), "On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes", Constr. Build. Mater., 168, 459-470. https://doi.org/10.1016/j.conbuildmat.2018.02.146. 

  14. Hognestad E. (1951), "A study of combined bending and axial load in reinforced concrete members", Bulletin Series No. 399, Engineering Experiment Station, Urbana, USA, University of Illinois. 

  15. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0. 

  16. Isfahani, F.T., Li, W. and Redaelli, E. (2016), "Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites", Cement Concrete Compos., 74, 154-163. https://doi.org/10.1016/j.cemconcomp.2016.09.007. 

  17. Karabash, Z. and Cabalar, A.F. (2015), "Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils", Geomech. Eng., 8(1), 1-15. http://dx.doi.org/10.12989/gae.2015.8.1.001. 

  18. Kim, J.K., Kim, J.S., Ha, G.J. and Kim, Y.Y. (2007), "Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag", Cement Concrete Res., 37(7), 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006. 

  19. Lee, D.K., Lee, K.C., Lee, C.D. and Shin, K.J. (2019), "Study on ECC tensile behavior due to constrained drying shrinkage", J. Korean Recycled Constr. Resour. Inst., 7(4), 367-374. https://doi.org/10.14190/JRCR.2019.7.4.367. 

  20. Lee, S.C., Cho, J.Y. and Vecchio, F.J. (2013a), "Tension-stiffening model for steel fiber-reinforced concrete containing conventional reinforcement", ACI Struct. J., 110(4), 639-648. 

  21. Lee, S.C., Cho, J.Y. and Vecchio, F.J. (2013b), "Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension", ACI Mater. J., 110(4), 403-412. 

  22. Lee, S.C., Kim, J.H., Cho, J.Y. and Shin, K.J. (2010), "Tension stiffening of reinforced high performance fiber reinforced cementitious composites (HPFRCC)", J. Korea Concrete Institute, 22(6), 859-866. https://doi.org/10.4334/jkci.2010.22.6.859. 

  23. Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers", Materials, 8(4), 1442-1458. https://doi.org/10.3390/ma8041442. 

  24. Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017. 

  25. Li, G.Y., Wang, P.M. and Zhao, X. (2007), "Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites", Cement Concrete Compos., 29(5), 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011. 

  26. Lim, T.Y., Paramasivam, P. and Lee, S.L. (1987), "Analytical model for tensile behavior of steel-fiber concrete", ACI Mater. J., 84(4), 286-298. 

  27. Magalhaes, M. da S., Toledo Filho, R.D. and Fairbairn, E. de M.R. (2015), "Thermal stability of PVA fiber strain hardening cement-based composites", Constr. Build. Mater., 94, 437-447. https://doi.org/10.1016/j.conbuildmat.2015.07.039. 

  28. Marti, P., Pfyl, T., Sigrist, V. and Ulaga, T. (1999), "Harmonized test procedures for steel fiber-reinforced concrete", ACI Mater. J., 96(6), 676-686. 

  29. Meda, A., Rinaldi, Z., Spagnuolo, S., De Rivaz, B. and Giamundo, N. (2019), "Hybrid precast tunnel segments in fiber reinforced concrete with glass fiber reinforced bars", Tunn. Undergr. Sp. Tech., 86, 100-112. https://doi.org/10.1016/j.tust.2019.01.016. 

  30. Mohsen, M.O., Al Ansari, M.S., Taha, R., Al Nuaimi, N. and Taqa, A.A. (2019), "Carbon nanotube effect on the ductility, flexural strength, and permeability of concrete", J. Nanomater., 2019, 1-11. https://doi.org/10.1155/2019/6490984. 

  31. Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002. 

  32. Na, C. and Kwak, H.G. (2011), "A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams", Comput. Concrete, 8(1), 1-22. 

  33. Nochaiya, T., Tolkidtikul, P., Singjai, P. and Chaipanich, A. (2008), "Microstructure and characterizations of portland-carbon nanotubes pastes", Adv. Mater. Res., 55, 549-552. https://doi.org/10.4028/www.scientific.net/amr.55-57.549. 

  34. Park, S.H., Sim, Y., Lee, W., Cho, S.K., Lee, D., Lee, S.C. and Yoo, S.W. (2021), "Material behavior of PVA cementitious composites with CNTs according to the mixing order", Proceedings of KSCE convention. 

  35. Popovices, S. (1973), "A numerical Approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. 

  36. Rhee, I. and Roh, Y.-S. (2013), "Properties of normal-strength concrete and mortar with multi-walled carbon nanotubes", Mag. Concrete Res., 65(16), 951-961. https://doi.org/10.1680/macr.12.00212. 

  37. Rousakis, T.C., Kouravelou, K.B. and Karachalios, T.K. (2014), "Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP-FR confinement of concrete", Compos. Part B: Eng., 57, 210-218. https://doi.org/10.1016/j.compositesb.2013.09.044. 

  38. Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5. 

  39. Shao, H., Chen, B., Li, B., Tang, S. and Li, Z. (2017), "Influence of dispersants on the properties of CNTs reinforced cement-based materials", Constr. Build. Mater., 131, 186-194. https://doi.org/10.1016/j.conbuildmat.2016.11.053. 

  40. Shi, B. and Kong, X. (2016), "Study of the diseases of shield tunnels and its reasons", Geo-China, 2016, 40-45. https://doi.org/10.1061/9780784480038.006 

  41. Shin, K.J., Kim, J.H., Cho, J.Y. and Lee, S.C. (2011), "Flexural behavior of high performance fiber reinforced cementitious composites (HPFRCC) beam with a reinforcing bar", J. Korea Concrete Inst., 23(2), 169-176. https://doi.org/10.4334/jkci.2011.23.2.169. 

  42. Shin, K.J., Jang, K.H., Choi, Y.C. and Lee, S.C. (2015), "Flexural behavior of HPFRCC members with inhomogeneous material properties", Materials, 8(4), 1934-1950. https://doi.org/10.3390/ma8041934. 

  43. Shooshpasha, I. and Shirvani, R.A. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., 8(1), 17-31. http://doi.org/10.12989/gae.2015.8.1.017. 

  44. Silvestro, L. and Jean Paul Gleize, P. (2020), "Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review", Constr. Build. Mater., 264, 120237. https://doi.org/10.1016/j.conbuildmat.2020.120237. 

  45. Taha, M.R., Alsharef, J.M., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559. 

  46. Tanaka, K., Sato, T., Yamabe, T., Okahara, K., Uchida, K., Yumura, M. and Ikazaki, F. (1994), "Electronic properties of carbon nanotube", Chem. Phys. Lett., 223(1-2), 65-68. https://doi.org/10.1016/0009-2614(94)00421-8. 

  47. Voo, J.Y.L. and Foster, S.J. (2003), "Variable engagement model for fibre reinforced concrete in tension", Uniciv Report No. R-420, University of New South Wales, School of Civil and Environmental Engineering, 86. 

  48. Wang, Z., Yu, J., Li, G., Zhang, M. and Leung, C.K. (2019), "Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack", Cement Concrete Compos., 100, 120-129. https://doi.org/10.1016/j.cemconcomp.2019.02.013. 

  49. Yan, Z., Zhu, H. and Ju, J.W. (2013), "Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures", Constr. Build. Mater., 38, 610-618. https://doi.org/10.1016/j.conbuildmat.2012.09.019. 

  50. Yilmaz, Y., Cetin, B. and Kahnemouei, V.B. (2017), "Compressive strength characteristics of cement treated sand prepared by static compaction method", Geomech. Eng., 12(6), 935-948. https://doi.org/10.12989/gae.2017.12.6.935. 

  51. Yoo, D.Y., Kim, S. and Lee, S.H. (2018), "Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension", Sensor. Actuat. A: Phys., 276, 125-136. https://doi.org/10.1016/j.sna.2018.04.009 

  52. You, I., Yoo, D.Y., Kim, S., Kim, M.J. and Zi, G. (2017), "Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes", Sensors, 17(11), 2481. https://doi.org/10.3390/s17112481. 

  53. Xu, G., He, C., Lu, D. and Wang, S. (2019), "The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata", Thin-Wall. Struct., 144, 106282. https://doi.org/10.1016/j.tws.2019.106282. 

  54. Xue, Y., Li, X., Li, G., Qiu, D., Gong, H. and Kong, F. (2020), "An analytical model for assessing soft rock tunnel collapse risk and its engineering application", Geomech. Eng., 23(5), 441-454. https://doi.org/10.12989/gae.2020.23.5.441. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로