$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

농업지역 지하수의 수리지화학 및 미생물 군집 구조 분석
Hydrogeochemistry and Microbial Community Structure of Groundwater in an Agricultural Area 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.27 no.2, 2022년, pp.61 - 75  

김동훈 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ,  오용화 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ,  이봉주 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터) ,  이정윤 (한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터)

Abstract AI-Helper 아이콘AI-Helper

This study evaluated the potential threat of agricultural and human activities to groundwater in the Noseong stream watershed, a typical agricultural area, through hydrogeochemical characteristics and microbial community analyses. The groundwater in the study area was Ca-SO4 and Ca-HCO3 types alluvi...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서 인간 활동에 의한 지하수 오염 특성을 파악하고 오염 가능성을 예측하여 사전에 오염을 예방할 수 있는 통합적인 관리 방안이 반드시 필요하다. 이러한 관점에서 본 연구는 농업 활동이 활발하고 음용수, 생활 용수 및 농업용수로 이용되고 있는 노성천 유역 지하수의 잠재적 위험성을 평가하기 위해 수질 및 미생물학적 특성 분석을 수행하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (74)

  1. Allende, A. and Monaghan, J., 2015, Irrigation water quality for leafy crops: A perspective of risks and potential solutions, Int. J. Environ. Res. Public Health, 12(7), 7457-7477. 

  2. Balkwill, D.L., Fredrickson, J.K., and Romine, M.F., 2006, Sphingomonas and related genera. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer New York, New York, NY, p. 605-629. 

  3. Bratanis, E., Andersson, T., Lood, R., and Bukowska-Faniband, E., 2020, Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes, Front. Microbiol., 11(662). 

  4. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010, Qiime allows analysis of high-throughput community sequencing data, Nat. Methods, 7(5), 335-336. 

  5. Cho, B.-W., Yun, U., Lee, B.-D., and Ko, K.-S., 2012, Hydrogeological characteristics of the wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations, The J. Eng. Geol., 22(2), 195-205. 

  6. De Vet, W., Dinkla, I., Abbas, B., Rietveld, L., and Van Loosdrecht, M., 2012, Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater, Biotechnol. Bioeng., 109(4), 904-912. 

  7. De Vet, W., Dinkla, I., Rietveld, L., and Van Loosdrecht, M., 2011, Biological iron cxidation by Gallionella spp. in drinking water production under fully aerated conditions, Water Res., 45(17), 5389-5398. 

  8. de Voogd, N.J., Cleary, D.F.R., Polonia, A.R.M., and Gomes, N.C.M., 2015, Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia, FEMS Microbiol. Ecol., 91(4). 

  9. Delafont, V., Samba-Louaka, A., Cambau, E., Bouchon, D., Moulin, L., and Hechard, Y., 2017, Mycobacterium llatzerense, a waterborne Mycobacterium, that resists phagocytosis by Acanthamoeba castellanii, Sci. Rep., 7(1), 46270. 

  10. Edgar, R.C., 2010, Search and clustering orders of magnitude faster than blast, Bioinform., 26(19), 2460-2461. 

  11. Forbes, B.A., Hall, G.S., Miller, M.B., Novak, S.M., Rowlinson, M.-C., Salfinger, M., Somoskovi, A., Warshauer, D.M., and Wilson, M.L., 2018, Practical guidance for clinical microbiology laboratories: Mycobacteria, Clin. Microbiol. Rev., 31(2), e00038-00017. 

  12. Ghilamicael, A.M., Boga, H.I., Anami, S.E., Mehari, T., and Budambula, N.L.M., 2018, Potential human pathogenic bacteria in five hot springs in eritrea revealed by next generation sequencing, PLoS One, 13(3), e0194554. 

  13. Gibbs, R.J., 1970, Mechanisms controlling world water chemistry, Science, 170(3962), 1088-1090. 

  14. Griebler, C. and Lueders, T., 2009, Microbial biodiversity in groundwater ecosystems, Freshw. Biol., 54(4), 649-677. 

  15. Hallbeck, L. and Pedersen, K., 2014, The family Gallionellaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 853-858. 

  16. Hassan, Z., Sultana, M., van Breukelen, B.M., Khan, S.I., and Roling, W.F., 2015, Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh, FEMS Microbiol. Ecol., 91(4). 

  17. Hlavinek, P., Bonacci, O., Marsalek, J., and Mahrikova, I., 2008, Dangerous pollutants (Xenobiotics) in urban water cycle. Nato Science for Peace and Security Series. Springer, Dordrecht. 

  18. Hounslow, A., 2018, Water quality data: Analysis and interpretation, p. 1-398. 

  19. Huntley, S., Hamann, N., Wegener-Feldbrugge, S., TreunerLange, A., Kube, M., Reinhardt, R., Klages, S., Muller, R., Ronning, C.M., Nierman, W.C., and Sogaard-Andersen, L., 2010, Comparative genomic analysis of fruiting body rormation in Myxococcales, Mol. Biol. Evol., 28(2), 1083-1097. 

  20. Ibekwe, A.M., Leddy, M., and Murinda, S.E., 2013, Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing, PLoS One, 8(11), e79490. 

  21. Janniche, G.S., Spliid, H., and Albrechtsen, H.J., 2012, Microbial community-level physiological profiles (CLPP and herbicide mineralization potential in groundwater affected by agricultural land use, J. Contam. Hydrol., 140-141, 45-55. 

  22. Jeong, C.H., Yang, J.H., Lee, Y.J., Lee, Y.C., Choi, H.Y., Kim, M.S., Kim, H.K., Kim, T.S., and Jo, B.U., 2015, Occurrences of uranium and radon-222 from groundwaters in various geological environment in the Hoengseong area., The J. Eng. Geol., 25(4), 557-576. 

  23. Kanamori, H., Weber, D.J., and Rutala, W.A., 2016, Healthcare outbreaks associated with a water reservoir and infection prevention strategies, Clin. Infect. Dis., 62(11), 1423-1435. 

  24. Kasalicky, V., Jezbera, J., Hahn, M.W., and Simek, K., 2013, The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains, PLoS One, 8(3), e58209. 

  25. Katsoyiannis, I.A. and Zouboulis, A.I., 2006, Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater, Water Qual. Rese. J., 41(2), 117-129. 

  26. Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E., 2006, Introduction to the proteobacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses. Springer New York, New York, NY, p. 3-37. 

  27. KIGAM, 2019, Integrated technology development for securing groundwater/geothermal resources and conserving ecosystem according to climate change. 

  28. Kim, D.-H., Moon, S.-H., Ko, K.-S., and Kim, S., 2020, Microbial community structures related to arsenic concentrations in groundwater occurring in Haman area, South Korea, Econ. Environ. Geol., 53(6), 655-666. 

  29. Kim, H., Kaown, D., Mayer, B., Lee, J.-Y., Hyun, Y., and Lee, K.-K., 2015, Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses, Sci. Total Environ., 533, 566-575. 

  30. Kim, K.-H., Yun, S.-T., Chae, G.-T., Choi, B.-Y., Kim, S.-O., Kim, K., Kim, H.-S., and Lee, C.-W., 2002, Nitrate contamination of alluvial groundwaters in the Keum river watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, The J. Eng. Geol., 12(4), 471-484. 

  31. Ko, K.-S., Ahn, J.-S., Suk, H.-J., Lee, J.-S., and Kim, H.-S., 2008, Hydrogeochemistry and statistical analysis of water quality for small potable water supply system in Nonsan area, J. Soil and Groundw. Environ., 13(6), 72-84. 

  32. Korbel, K., Chariton, A., Stephenson, S., Greenfield, P., and Hose, G.C., 2017, Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems, Sci. Rep., 7(1), 40702. 

  33. Kwon, H.-I., Koh, D.-C., Jung, B., and Ha, K., 2017, Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation., J. Geol. Soc. Korea, 53, 277-290. 

  34. Kwon, H.-I., Koh, D.-C., Jung, Y.-Y., Kim, D.-H., and Ha, K., 2020, Evaluating the impacts of intense seasonal groundwater pumping on stream-aquifer interactions in agricultural riparian zones using a multi-parameter approach, J. Hydrol., 584, 124683. 

  35. Lacroix, B. and Citovsky, V., 2013. Agrobacterium. In: Maloy, S., Hughes, K. (Eds.), Brenner's encyclopedia of genetics (Second Edition). Academic Press, San Diego, p. 52-54. 

  36. Lall, U., Josset, L., and Russo, T., 2020, A snapshot of the world's groundwater challenges, Annu. Rev. Environ. Resour., 45, 171-194. 

  37. Lee, G.-M., Park, S., Kim, K.-I., Jeon, S.-H., Song, D., Kim, D.-h., Kim, T.-S., Yun, S.-T., Chung, H.M., and Kim, H.-K., 2017, Evaluation for impacts of nitrogen source to groundwater quality in livestock farming area, Korean J. Soil Sci. Fert., 50(5), 345-356. 

  38. Lee, J.-C., Kim, S.-G., and Whang, K.-S., 2015, Sphingobium subterraneum sp. Nov., isolated from ground water, Int. J. Syst. Evol. Microbiol., 65(Pt_2), 393-398. 

  39. Lee, J.-H., Lee, B.-J., and Unno, T., 2018, Bacterial communities in ground-and surface water mixing zone induced by seasonal heavy extraction of groundwater, Geomicrobiol. J., 35(9), 768-774. 

  40. Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J., 2012, Ultrafast clustering algorithms for metagenomic sequence analysis, Brief. Bioinform., 13(6), 656-668. 

  41. Moon, J.-T., Kim, K.-J., Kim, S.-H., Jeong, C.-S., and Hwang, G.-S., 2008, Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong river watershed, Econ. Environ. Geol., 41(6), 673-683. 

  42. Mueller, D.K. and Helsel, D., 1996, Nutrients in the nation's waters--too much of a good thing? 

  43. Nelson, W.C. and Stegen, J.C., 2015, The teduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle, Front. Microbiol., 6, 713-713. 

  44. Oh, S. and Choi, D., 2019, Microbial community enhances biodegradation of bisphenol a through selection of Sphingomonadaceae, Microb. Ecol., 77(3), 631-639. 

  45. Oh, Y.H., Koh, D.-C., Kwon, H.-I., Jung, Y.-Y., Lee, K.Y., Yoon, Y.-Y., Kim, D.-H., Moon, H.S., and Ha, K., 2021, Identifying and quantifying groundwater inflow to a stream using 220Rn and 222Rn as natural tracers, J. Hydrol. Reg. Stud., 33, 100773. 

  46. Oh, Y.H., Kim, D.-H., Lee, S.-H., Moon, H.S., and Cho, S.Y., 2020, Determining characteristics of groundwater inflow to the stream in an urban area using hydrogeochemical tracers (222Rn and major dissolved ions) and microbial community analysis, J. Soil Groundw. Environ., 25(2), 16-23. 

  47. Orata, F.D., Meier-Kolthoff, J.P., Sauvageau, D., and Stein, L.Y., 2018, Phylogenomic analysis of the gammaproteobacterial methanotrophs (rrder Methylococcales) calls for the reclassification of members at the genus and species levels, Front. Microbiol., 9(3162). 

  48. Oren, A., 2014, The family Rhodocyclaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 975-998. 

  49. Pachepsky, Y., Shelton, D.R., McLain, J.E.T., Patel, J., and Mandrell, R.E., 2011, Irrigation waters as a source of pathogenic microorganisms in produce: a review, Adv. Agron., 113, 75-141. 

  50. Pagadala, S., Marine, S.C., Micallef, S.A., Wang, F., Pahl, D.M., Melendez, M.V., Kline, W.L., Oni, R.A., Walsh, C.S., Everts, K.L., and Buchanan, R.L., 2015, Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes, Int. J. Food. Microbiol., 196, 98-108. 

  51. Pedersen, K., 2011, Gallionella. In: Reitner, J., Thiel, V. (Eds.), Encyclopedia of Geobiology. Springer Netherlands, Dordrecht, p. 411-412. 

  52. Percival, S.L. and Williams, D.W., 2014, Chapter Nine - Mycobacterium. In: Percival, S.L., Yates, M.V., Williams, D.W., Chalmers, R.M., Gray, N.F. (Eds.), Microbiology of Waterborne Diseases (Second Edition). Academic Press, London, p. 177-207. 

  53. Piper, A.M., 1944, A Graphic procedure in the geochemical interpretation of water-analyses, Eos, Transactions American Geophysical Union, 25(6), 914-928. 

  54. Ramirez-Castillo, F.Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-Gonzalez, F.J., Harel, J., and Guerrero-Barrera, A.L., 2015, Waterborne pathogens: detection methods and challenges, Pathogens, 4(2), 307-334. 

  55. Saether, O.M. and De Caritat, P., 1996, Geochemical processes, weathering and groundwater recharge in catchments. CRC Press. 

  56. Sang, S., Zhang, X., Dai, H., Hu, B.X., Ou, H., and Sun, L., 2018, Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl river delta, China, Sci. Rep., 8(1), 17317. 

  57. Schulze-Robbecke, R., 1993, Mycobacteria in the environment, Immun. Infekt., 21(5), 126-131. 

  58. Sherwood, W.C., 1989, Chloride loading in the south fork of the Shenandoah river, Virginia, U.S.A, Environ. Geol., 14, 99-106. 

  59. Slover, C.M. and Danziger, L., 2008, Lactobacillus: a review, Clin. Microbiol. Newsl., 30(4), 23-27. 

  60. Spanevello, M.D. and Patel, B.K.C., 2004, The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel, FEMS Microbiol. Ecol., 50(1), 63-73. 

  61. Stites, W. and Kraft, G.J., 2001, Nitrate and chloride loading to groundwater from an irrigated north-central U.S. sand-plain vegetable field, J. Environ. Qual., 30(4), 1176-1184. 

  62. Stoecker, K., Bendinger, B., Schoning, B., Nielsen, P.H., Nielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., and Wagner, M., 2006, Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase, Proc. Natl. Acad. Sci., 103(7), 2363-2367. 

  63. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M., and Michel, G., 2011, Environmental and gut Bacteroidetes: the food connection, Front. Microbiol., 2, 93-93. 

  64. UN Water, 2018, Progress on level of water stress: global baseline for SDG indicator 6.4. 2, UN Water, Geneva (2018). 

  65. Uyttendaele, M., Jaykus, L.-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., Holvoet, K., Korsten, L., Lau, M., McClure, P., Medema, G., Sampers, I., and Rao Jasti, P., 2015, Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production, Comp. Rev. Food Sci. Food Saf., 14(4), 336-356. 

  66. Van Der Linden, I., Cottyn, B., Uyttendaele, M., Berkvens, N., Vlaemynck, G., Heyndrickx, M., and Maes, M., 2014, Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers, Int. J. Environ. Re.s Public Health, 11(10), 10105-10124. 

  67. Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sun, R., Ye, X., Huang, Y., Zhang, Z., and Cui, Z., 2016, Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze river, Sci. Rep., 6(1), 35046. 

  68. Waskiewicz, A. and Irzykowska, L., 2014, Flavobacterium spp. - characteristics, occurrence, and toxicity. In: Batt, C.A., Tortorello, M.L. (Eds.), Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford, p. 938-942. 

  69. Wolfe, R., 1960, Observations and studies of Crenothrix polyspora, J. Am. Water Work. Assoc., 52, 915-918. 

  70. Yang, J.H., Kim, H.-K., Kim, M., Lee, M.K., Shin, I.K., Park, S.H., Kim, H.S., Ju, B.K., Kim, D.S., and Kim, T.S., 2015, Evaluation of groundwater quality deterioration using the hydrogeochemical characteristics of shallow portable groundwater in an agricultural area, The J. Eng. Geol., 25(4), 533-545. 

  71. Yoon, J., Park, S., Choi, H., Kim, D.H., Kim, M., Yun, S.-T., Kim, Y., and Kim, H.-K., 2020, Analysis of groundwater quality and contamination factors in livestock region, South Korea, J. Soil Groundw. Environ., 25(4), 98-105. 

  72. Yoon, K.-S., Tsukada, N., Sakai, Y., Ishii, M., Igarashi, Y., and Nishihara, H., 2008, Isolation and characterization of a new facultatively autotrophic hydrogen-xxidizing betaproteobacterium, Hydrogenophaga sp. AH-24, FEMS Microbiol. Lett., 278(1), 94-100. 

  73. Zeng, X., Hosono, T., Matsunaga, M., Ohta, H., Niidome, T., Shimada, J., and Morimura, S., 2017, Spatial distribution of microbial communities in the alluvial aquifer along the Oyodo river, Miyakonojo basin, Japan, J. Water Environ. Technol., 15(4), 152-162. 

  74. Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., and Cheng, X., 2016, Alterations in soil microbial community composition and biomass following agricultural land use change, Sci. Rep., 6(1), 36587. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로