$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

완충재 설계시 고려사항 및 고기능 완충재 연구 현황
Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.32 no.1, 2022년, pp.59 - 77  

이기준 (한국원자력연구원) ,  윤석 (한국원자력연구원) ,  김태현 (한국원자력연구원) ,  김진섭 (한국원자력연구원)

초록
AI-Helper 아이콘AI-Helper

현재 고준위방사성폐기물 처분을 위한 완충재의 설계 기준 온도는 100 ℃ 미만이기에 완충재의 열 분산 능력이 개선된다면 처분장의 처분 터널과 처분 공의 간격을 줄일 수 있다. 본 연구에서는 완충재의 열-수리-역학 성능 기준을 분석하고자 하였으며, 완충재의 열전도도를 개선할 수 있는 고기능 완충재의 연구 현황에 대해 알아보고자 하였다. 우선, 열전도도는 가능한 높아야 하며 완충재의 열전도도 값은 건조밀도, 함수비, 온도, 광물조성, 벤토나이트 유형에 영향을 받는다. 또한 완충재에 함유된 유기물은 처분용기의 부식 성능에 큰 영향을 미칠 수 있기에 완충재의 유기물 함량은 매우 낮아야 한다. 수리전도도는 근계암반보다 더 낮게 설정해야 하며, 완충재가 제 기능을 하기 위해 팽윤성이 적정해야 한다. 고기능 완충재 개발을 위해 대표적으로 모래, 흑연, 산화 흑연 등의 첨가제를 사용하며 흑연의 경우 모래보다 아주 적은 첨가량으로 열전도도를 크게 향상시킬 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be redu...

주제어

표/그림 (17)

참고문헌 (85)

  1. Agus, S.S., and Schanz, T., 2008, A method for predicting swelling pressure of compacted bentonites, Acta Geotechnica, 3(2), 125-137. 

  2. Apted, M., Arthur, R., and Savage, D., 2005, Engineered Barrier System-Long-term Stability of Buffer and Backfill, Synthesis and extended abstracts (No. SKI-R-05-48), Swedish Nuclear Power Inspectorate. 

  3. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., 2008, Superior thermal conductivity of single-layer graphene, Nano letters, 8(3), 902-907. 

  4. Carnahan, C.L., 1983, Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories, MRS Online Proceedings Library Archive, 26. 

  5. Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, J.P., Thomas, F., and Poirier, J.E., 1992, Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite, 1, The sodium-exchanged form. Langmuir, 8(11), 2730-2739. 

  6. Castellanos, E., Villar, M.V., Romero, E., Lloret, A., and Gens, A., 2008, Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite, Physics and Chemistry of the Earth, Parts A/B/C, 33, S516-S526. 

  7. Chen, L., Liu, Y.M., Wang, J.,Cao, S.F., Xie, J.L., Ma, L.K., et al., and Liu, J., 2014, Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test. Engineering geology, 172, 57-68. 

  8. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., and Cui, Y.J., 2018a, Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite, Applied Clay Science, 166, 318-326. 

  9. Chen, Y.G., Liu, X.M., Mu, X., Ye, W.M., Cui, Y.J., Chen, B., and Wu, D.B., 2018b, Thermal conductivity of compacted GO-GMZ bentonite used as buffer material for a high-level radioactive waste repository, Advances in Civil Engineering, 2018. 

  10. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., Cui, Y.J., 2019a, Thermal volumetric bahaviour of compacted GMZ bentonite saturated with salt solution. In: Proceedings of the 8th international Congress on Environmental Geotechnics Volume 3. Springer, Singapore, pp. 57-64. 

  11. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., and Cui, Y.J., 2019b, Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite, Engineering Geology, 255, 37-47. 

  12. Chen, Z.G., Tang, C.S., Zhu, C., Shi, B., and Liu, Y.M., 2017, Compression, swelling and rebound behavior of GMZ bentonite/additive mixture under coupled hydro-mechanical condition. Engineering Geology, 221, 50-60. 

  13. Cho, W.J., Lee, J.O., and Chun, K.S., 1999, The temperature effects on hydraulic conductivity of compacted bentonite, Applied clay science, 14(1-3), 47-58. 

  14. Cho, W.J., 2019, Bentonite-Barier Material for Radioactive Waste Disposal, pp.181, KAERI/GP-535/2019. 

  15. Cho, W.J., Chun, K., Lee, J.O., and Kang, M.J., 1997, Analysis of Functional Criteria for Buffer Material in the High-level Waste Repository, Korea Atomic Energy Research Institute Technical Report, 16-18, KAERI/TR-933/97. 

  16. Cho, W.J., Lee, J.O., and Kang, C.H., 2000, Hydraulic conductivity of bentonite-sand mixture for a potential backfill material for a high-level radioactive waste repository, Nuclear Engineering and Technology, 32(5), 495-503. 

  17. Cui, S.L., Zhang, H.Y., and Zhang, M., 2012, Swelling characteristics of compacted GMZ bentonite-sand mixtures as a buffer/backfill material in China. Engineering Geology, 141, 65-73. 

  18. Gillham, R.W., and Cherry, J.A., 1982, Contaminant migration in saturated unconsolidated geologic deposits. In Recent trends in hydrogeology, 189, 31-62. 

  19. Herbert, H.J., Kasbohm, J., Sprenger, H., Fernandez, A.M., and Reichelt, C., 2008, Swelling pressures of MX-80 bentonite in solutions of different ionic strength, Physics and Chemistry of the Earth, Parts A/B/C, 33, S327-S342. 

  20. Hueckel, T., and Pellegrini, R., 1992, Effective stress and water pressure in saturated clays during heating-cooling cycles, Canadian Geotechnical Journal, 29(6), 1095-1102. 

  21. Ikonen, K., and Raiko, H., 2012, Thermal dimensioning of Olkiluoto repository for spent fuel. Working Report 2012-56. Posiva Oy, Eurajoki. 

  22. Jalique, D.R., Stroes-Gascoyne, S., Hamon, C.J., Priyanto, D.G., Kohle, C., Evenden, W.G., et al., and Korber, D.R., 2016, Culturability and diversity of microorganisms recovered from an eight-year old highly-compacted, saturated MX-80 Wyoming bentonite plug. Applied Clay Science, 126, 245-250. 

  23. Jenni, A., Wersin, P., Thoenen, T., Baeyens, B., Ferrari, A., Gimmi, T., Mader, U., Marschall, P., Hummel, W., and Leupin, O., 2019, Bentonite Backfill Performance in a High-Level Waste Repository: A Geochemical Perspective. Technical Report NTB 19-03 270. 

  24. JNC, 2000, H12: Project to establish the technical basis for HLW disposal in Japan. Supporting Report 3, Safety Assessment of the Geological Disposal System. JNC Tech. Rep., JNC TN1401 2000-04. 

  25. Jobmann, M., and Buntebarth, G., 2009, Influence of graphite and quartz addition on the thermo-physical properties of bentonite for sealing heat-generating radioactive waste. Applied Clay Science, 44(3-4), 206-210. 

  26. Johnson, L.H., Tait, J.C., Shoesmith, D.W., Crosthwaite, J.L., and Gray, M.N., 1994, The disposal of Canada's nuclear fuel waste: engineered barriers alternatives (No. AECL-10718). Atomic Energy of Canada Limited. 

  27. Juvankoski, M., 2013, Buffer design 2012 (No. POSIVA-12-14). Posiva Oy. 

  28. Karnland, O., 2010, Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository. 

  29. Kim, M.J., Lee, G.J., and Yoon, S., 2021, Numerical Study on the Effect of Enhanced Buffer Materials in a High-Level Radioactive Waste Repository. Applied Sciences, 11(18), 8733. 

  30. Laird, D. A., 1996, Model for crystalline swelling of 2: 1 phyllosilicates. Clays and Clay Minerals, 44(4), 553-559. 

  31. Lee, C., Wei, X., Kysar, J.W., and Hone, J., 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388. 

  32. Lee, G.J., Yoon, S., and Cho, W.J., 2021, Effect of Bentonite Type on Thermal Conductivity in a HLW Repository. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 19(3), 331-338. 

  33. Lee, J., Kim, I., Ju, H., Choi, H., and Cho, D., 2020, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 18(spc), 1-19. 

  34. Lee, J.O., Choi, H., and Lee, J.Y., 2016, Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository. Annals of Nuclear Energy, 94, 848-855. 

  35. Li, H.F., Chen, M.Q., Fu, B.A., and Liang, B., 2019, Evaluation on the thermal and moisture diffusion behavior of sand/bentonite. Applied Thermal Engineering, 151, 55-65. 

  36. Liu, L., 2013, Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 303-318. 

  37. Liu, Y.M., Cai, M.F., and Wang, J., 2007, Thermal conductivity of buffer material for high-level waste disposal. Chinese Journal of Rock Mechanics and Engineering, 26(S1), 3891-3896. 

  38. Maanoja, S., Palmroth, M., Salminen, L., Lehtinen, L., Kokko, M., Lakaniemi, A.M. et al., and Rintala, J., 2021, The effect of compaction and microbial activity on the quantity and release rate of water-soluble organic matter from bentonites. Applied Clay Science, 211, 106192. 

  39. Madsen, F.T., 1998, Clay mineralogical investigations related to nuclear waste disposal. Clay minerals, 33(1), 109-129. 

  40. Moser, D.P., Onstott, T.C., Fredrickson, J.K., Brockman, F.J., Balkwill, D.L., Drake, G.R., Pfiffner, S.M., White, D.C., Takai, K., and Pratt, L.M., 2003, Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiology Journal 20, 517-548. 

  41. Oscarson, D.W., Stroes-Gascoyne, S., and Cheung, S.C.H., 1986, The effect of organic matter in clay sealing materials on the performance of a nuclear fuel waste disposal vault. Atomic Energy of Canada Limited Report, AECL-9078. 

  42. Pacovsky, J., 2001, Selected results from geotechnical research on bentonite. In Proceedings of the 8th International Conference on Radioactive Waste Management and Environmental Remediation. 

  43. Park, S., Yoon, S., Kwon, S., Lee, M.S., and Kim, G.Y., 2021, Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material. Progress in Nuclear Energy, 137, 103759. 

  44. Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiology Letters 185, 9-16. 

  45. Piskova, A., Bezdicka, P., Hradil, D., Kafunkova, E., Lang, K., Vecernikova, E., Kovanda, F., and Grygar, T., 2010, High-temperature X-ray powder diffraction as a tool for characterization of smectites, layered double hydroxides, and their intercalates with porphyrins. Applied clay science, 49(4), 363-371. 

  46. PNC, 1992, Research and development on geological disposal of high-level radioactive waste, PNC TN1410 93-059. 

  47. Posiva S.K.B, 2017, Safety functions, performance targets and technical design requirements for a KBS-3V repository. Conclusions and recommendations from a joint SKB and Posiva working group. Posiva SKB Report 01, Posiva Oy, Svensk Karnbranslehantering AB. 

  48. Posiva, 2012, Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012 (No. POSIVA-12-5). Posiva Oy. 

  49. Pusch, R., Karnland, O., and Hokmark, H., 1990, GMM-a general microstructural model for qualitative and quantitative studies of smectite clays (No. SKB-TR-90-43). Swedish Nuclear Fuel and Waste Management Co. 

  50. Romero, E., Villar, M.V., and Lloret, A., 2005, Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays. Engineering Geology, 81(3), 255-268. 

  51. Shariatmadari, N., and Saeidijam, S., 2012, The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture. International Journal of Civil Engineering, 10(2), 162-167. 

  52. SKB, 2004, Interim main report of the safety assessment SR-Can. SKB Technical Report TR-04-11, Swedish Nuclear Fuel Management Company Limited, Stockholm, Sweden. 

  53. SKB, 2007. RD&D-programme 2007, SKB TR-07-12. SKB Swedish Nuclear Fuel and Waste Management CO., Stockholm, pp. 260. 

  54. SKBF/KBS, 1983, Final Storage of Spent Fule-KBS-3. 

  55. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., 2008, Graphene-based ultracapacitors. Nano letters, 8(10), 3498-3502. 

  56. Stroes-Gascoyne, S., and Hamon, C.J., 2008, The Effect of Intermediate Dry Densities and Intermediate Porewater Salinities on the Culturability of Heterotrophic Aerobic Bacteria in Compacted 100% Bentonite. NWMO-TR-2008-11; Nuclear Waste Management Organization. 

  57. Stroes-Gascoyne, S., and West, J.M., 1997, Microbial studies in the Canadian nuclear fuel waste management program. FEMS Microbiology Reviews 20, 573-590. 

  58. Stroes-Gascoyne, S., Hamon, C.J., and Maak, P., 2011, Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository. Physics and Chemistry of the Earth, Parts A/B/C 36, 1630-1638. 

  59. Sun, D.A., Cui, H., and Sun, W., 2009, Swelling of compacted sand-bentonite mixtures. Applied Clay Science, 43(3-4), 485-492. 

  60. Sun, D.A., Sun, W.J., and Fang, L., 2014, Swelling characteristics of Gaomiaozi bentonite and its prediction. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 113-118. 

  61. Sun, D.A., Zhang, L., Li, J., and Zhang, B., 2015, Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution. Applied Clay Science, 105, 207-216. 

  62. Sun, Z., Chen, Y.G., Cui, Y.J., Xu, H.D., Ye, W.M., and Wu, D.B., 2018, Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite: the Beishan site case, Gansu, China. Engineering Geology, 244, 66-74. 

  63. Tang, A.M., and Cui, Y.J., 2010, Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2(1), 91-96. 

  64. Tang, A.M., Cui, Y.J., and Le, T.T., 2008a, A study on the thermal conductivity of compacted bentonites. Applied Clay Science, 41(3-4), 181-189. 

  65. Tang, A.M., Cui, Y.J., and Barnel, N., 2008b, Thermo-mechanical behaviour of a compacted swelling clay. Geotechnique, 58(1), 45-54. 

  66. Tarnawski, V.R., Momose, T., and Leong, W.H., 2009, Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique, 59(4), 331-338. 

  67. Usman, M.O., and Simpson, M.J., 2021, Assessment of the molecular-level compositional heterogeneity of natural organic matter in bentonites intended for long-term used nuclear fuel storage. Organic Geochemistry, 152, 104166. 

  68. Van, O.H., 1991, Clay colloid chemistry for clay technologists. Geologists and soil scientists. 

  69. Villar, M.V., 2004, Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report. 

  70. Villar, M.V., and Lloret, A., 2004, Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied clay science, 26(1-4), 337-350. 

  71. Villar, M.V., Gomez-Espina, R., and Lloret, A., 2010, Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2(1), 71-78. 

  72. Wen, Z.J., 2006, Physical property of China's buffer material for high-level radioactive waste repositories. Chinese Journal of Rock Mechanics and Engineering, 25(4), 794-800. 

  73. Westsik, J.H., Bray, L.A., Hodges, F.N., and Wheelwright, E.J., 1981, Permeability, swelling and radionuclide retardation properties of candidate backfill materials. MRS Online Proceedings Library (OPL), 6. 

  74. Xu, L., Ye, W.M., Chen, B., Chen, Y.G., and Cui, Y.J., 2016, Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials. Engineering Geology, 213, 46-54. 

  75. Xu, Y., Zeng, Z., and Lv, H., 2019, Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository. Applied Clay Science, 174, 10-14. 

  76. Ye, W.M., Zhang, Y.W., Chen, Y.G., Chen, B., and Cui, Y. J., 2013, Experimental investigation on the thermal volumetric behavior of highly compacted GMZ01 Bent. Applied clay science, 83, 210-216. 

  77. Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J., 2014, Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Applied Clay Science, 101, 192-198. 

  78. Yong, R.N., 1999, Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering geology, 54(1-2), 3-13. 

  79. Yoon, S., Kim, M.J., Lee, S.R., and Kim, G.Y., 2018a, Thermal conductivity estimation of compacted bentonite buffer materials for a high-level radioactive waste repository. Nuclear Technology, 204(2), 213-226. 

  80. Yoon, S., Cho, W., Lee, C., and Kim, G.Y., 2018b, Thermal conductivity of Korean compacted bentonite buffer materials for a nuclear waste repository. Energies, 11(9), 2269. 

  81. Yoon, S., Kim, M.J., Park, S., and Kim, G.Y., 2021, Thermal conductivity prediction model for compacted bentonites considering temperature variations. Nuclear Engineering and Technology, 53, 3359-3366. 

  82. Zhang, F., Ye, W.M., Wang, Q., Chen, Y.G., and Chen, B., 2019, An insight into the swelling pressure of GMZ01 bentonite with consideration of salt solution effects. Engineering Geology, 251, 190-196. 

  83. Zhang, M., Zhang, H., Cui, S., Jia, L., Zhou, L., and Chen, H., 2012, Engineering properties of GMZ bentonite-sand as buffer/backfilling material for high-level waste disposal. European journal of environmental and civil engineering, 16(10), 1216-1237. 

  84. Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J., 2013, Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Engineering Geology, 166, 74-80. 

  85. Zhuang, Y.C., Xie, K. H., and Sun, Y.H., 2005, Experimental study on thermal conductivity of mixed materials of sand and bentonite. Yantu Lixue(Rock Soil Mech.), 26(2), 261-264. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로