$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Two New Species and Three New Records of Ascomycetes in Korea 원문보기

Mycobiology, v.50 no.1, 2022년, pp.30 - 45  

Nguyen, Thuong T.T. (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ,  Lim, Hyo Jin (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ,  Chu, So Jeong (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ,  Lee, Hyang Burm (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

During a survey of plant-inhabiting fungi and water niches from Korea, noteworthy fungi were collected; among them, two new species, Paracamarosporium noviaquum sp. nov. and Phyllosticta gwangjuensis sp. nov., are described based on morphology and multi-gene phylogenies. Paracamarosporium noviaquum ...

주제어

표/그림 (11)

참고문헌 (78)

  1. 1 Naranjo-Ortiz MA , Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi . Biol Rev Camb Philos Soc . 2019 ; 94 ( 6 ): 2101 – 2137 . 31659870 

  2. 2 Wijayawardene NN , Hyde KD , Al-Ani LKT , et al. Outline of fungi and fungus-like taxa . Mycosphere . 2020 ; 11 ( 1 ): 1060 – 1456 . 

  3. 3 Kirk PM , Cannon PF , Minter DW , et al. Ainsworth and Bisby’s dictionary of the Fungi . 10th ed. Wallingford : CAB International ; 2008 . 

  4. 4 Hongsanan S , Hyde KD , Phookamsak R , et al. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae . Mycosphere . 2020 ; 11 ( 1 ): 1553 – 2107 . 

  5. 5 McKenzie E , Jones EBG , Hyde KD. Taxonomy and phylogeny of Dothideomycetes . Phytotaxa . 2014 ; 176 ( 1 ): 5 – 6 . 

  6. 6 Jones EBG , Devadatha B , Abdel-Wahab MA , et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments . Botanica Marina . 2020 ; 63 ( 2 ): 155 – 181 . 

  7. 7 Turgeon BG , Baker SE. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin . Adv Genet . 2007 ; 57 : 219 – 261 . 17352906 

  8. 8 Stukenbrock EH , Quaedvlieg W , Javan-Nikhah M , et al. Zymoseptoria ardabiliae and Z . pseudotritici , two progenitor species of the septoria tritici leaf blotch fungus Z . tritici (synonym: Mycosphaerella graminicola ) . Mycologia . 2012 ; 104 ( 6 ): 1397 – 1407 . 22675045 

  9. 9 Haridas S , Albert R , Binder M , et al. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens . Stud Mycol . 2020 ; 96 : 141 – 153 . 32206138 

  10. 10 Ohm RA , Feau N , Henrissat N , et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi . PLoS Pathog . 2012 ; 8 ( 12 ): e1003037 . 23236275 

  11. 11 Hyde KD , Nilsson RH , Alias SA , et al. One stop shop: backbones trees for important phytopathogenic genera: I . Fungal Divers . 2014 ; 67 ( 1 ):1 21 – 125 . 

  12. 12 Hyde KD , Norphanphoun C , Maharachchikumbura SSN , et al. Refined families of Sordariomycetes . Mycosphere . 2020 ; 11 ( 1 ): 305 – 1059 . 

  13. 13 Zhang N , Castlebury LA , Miller AN , et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny . Mycologia . 2006 ; 98 ( 6 ): 1076 – 1087 . 17486982 

  14. 14 Maharachchikumbura SSN , Hyde KD , Jones EBG , et al. Families of Sordariomycetes . Fungal Divers . 2016 ; 79 ( 1 ): 1 – 317 . 

  15. 15 Luo Z-L , Hyde KD , Liu JKJ , et al. Freshwater Sordariomycetes . Fungal Divers . 2019 ; 99 ( 1 ): 451 – 660 . 

  16. 16 Błaszczyk L , Siwulski M , Sobieralski K , et al. Trichoderma spp. – application and prospects for use in organic farming and industry . J Plant Prot Res . 2014 ; 54 ( 4 ): 309 – 317 . 

  17. 17 Hyde KD , Xu J , Rapior S , et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially . Fungal Divers . 2019 ; 97 ( 1 ): 1 – 136 . 

  18. 18 Dannon HF , Dannon AE , Douro-Kpindou OK , et al. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management . J Cotton Res . 2020 ; 3 ( 1 ): 24 . 

  19. 19 Gangadevi V , Muthumary J. Taxol, an anticancer drug produced by an endophytic fungus B . robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb . World J Microbiol Biotechnol . 2008 ; 24 ( 5 ): 717 – 724 . 

  20. 20 Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation . Mycol Res . 1991 ; 95 ( 6 ): 641 – 655 . 

  21. 21 Hawksworth DL , Lücking R. Fungal diversity revisited 2.2 to 3.8 million species . Microbiol Spectr . 2017 ; 5 ( 4 ):FUNK-0052-2016. 

  22. 22 Shearer CA , Descals E , Kohlmeyer B , et al. Fungal biodiversity in aquatic habitats . Biodivers Conserv . 2007 ; 16 ( 1 ): 49 – 67 . 

  23. 23 Jones EBG , Hyde KD , Pang KL. Freshwater fungi and fungal-Like organisms . Boston (MA) : De Gruyter ; 2014 . 

  24. 24 El-Elimat T , Raja HA , Figueroa M , et al. Freshwater fungi as a source of chemical diversity: a review . J Nat Prod . 2021 ; 84 ( 3 ): 898 – 916 . 33662206 

  25. 25 Deshmukh SK , Prakash V , Ranjan N. Marine fungi: a source of potential anticancer compounds . Front Microbiol . 2017 ; 8 : 2536 – 2560 . 29354097 

  26. 26 Schulz B , Boyle C , Draeger S , et al. Endophytic fungi: a source of novel biologically active secondary metabolites . Mycol Res . 2002 ; 106 ( 9 ): 996 – 1004 . 

  27. 27 Manganyi MC , Ateba CN. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications . Microorganisms . 2020 ; 8 ( 12 ): 1934 . 

  28. 28 Nguyen TTT , Lee SH , Jeon SJ , et al. First records of rare Ascomycete fungi, Acrostalagmus luteoalbus , Bartalinia robillardoides , and Collariella carteri from freshwater samples in Korea . Mycobiology . 2019 ; 47 ( 1 ): 1 – 17 . 30988986 

  29. 29 Eo J-K , Park H , Eom A-H. Diversity of endophytic fungi isolated from Pinus densiflora and Juniperus rigida distributed in Mt . Baekryeonsan and Mt. Johangsan, Korea. K J Mycol . 2018 ; 46 : 437 – 446 . 

  30. 30 Goh J , Mun HJ , Jeon Y-J , et al. First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of . Korea. K J Mycol . 2020 ; 48 : 103 – 116 . 

  31. 31 Lim HJ , Nguyen TTT , Lee HB. Six newly recorded fungal taxa from freshwater niche in Korea . Mycobiology . 2021 ; 49 ( 2 ): 105 – 121 . 

  32. 32 Nguyen TTT , Frisvad JC , Kirk PM , et al. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea . JoF . 2021 ; 7 ( 9 ): 722 . 34575760 

  33. 33 White TJ , Bruns T , Lee S , et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics . In: Innis MA , Gelfand DH , Sninsky JJ , et al. editors. PCR protocols: a guide to methods and applications . San Diego (CA): Academic Press ; 1990 . p. 315 – 322 . 

  34. 34 Bunyard BA , Nicholson MS , Royse DJ. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene . Mycologia . 1994 ; 86 ( 6 ): 762 – 772 . 

  35. 35 Vilgalys R , Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species . J Bacteriol . 1990 ; 172 ( 8 ): 4238 – 4246 . 2376561 

  36. 36 Liu YJ , Whelen S , Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit . Mol Biol Evol . 1999 ; 16 ( 12 ): 1799 – 1808 . 10605121 

  37. 37 Carbone I , Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes . Mycologia . 1999 ; 91 ( 3 ): 553 – 556 . 

  38. 38 Nguyen TTT , Voigt K , Santiago ALC , et al. Discovery of novel Backusella (Backusellaceae, Mucorales) isolated from invertebrates and toads in Cheongyang, Korea . JoF . 2021 ; 7 ( 7 ): 513 . 34199055 

  39. 39 Capella-Gutiérrez S , Silla-Martínez JM , Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses . Bioinformatics . 2009 ; 25 ( 15 ): 1972 – 1973 . 19505945 

  40. 40 Ronquist F , Teslenko M , van der Mark P , et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space . Syst Biol . 2012 ; 61 ( 3 ): 539 – 542 . 22357727 

  41. 41 Rambaut A. FigTree, Version 1.3. 1. Computer Program Distributed by the Author. 2009 . 

  42. 42 Verkley GJM , da Silva M , Wicklow DT , et al. Paraconiothyrium , a new genus to accommodate the mycoparasite Coniothyrium minitans , anamorphs of Paraphaeosphaeria , and four new species . Stud Mycol . 2004 ; 50 : 323 – 335 . 

  43. 43 Hernández-Restrepo M , Schumacher RK , Wingfield MJ , et al. Fungal systematics and evolution: FUSE 2 . Sydowia . 2016 ; 68 : 193 – 230 . 

  44. 44 Zhdanova NN. Rare and new species of Dematiaceae isolated from maize rhizosphere of various climatic belts of the Ukrainian SSR . Mykrobiologichnyi Zhurnal Kiev . 1966 ; 28 ( 1 ): 36 – 40 . 

  45. 45 Gräfenhan T , Schroers H-J , Nirenberg HI , et al . An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora , Acremonium , Fusarium , Stilbella , and Volutella . Stud Mycol . 2011 ; 68 : 79 – 113 . 21523190 

  46. 46 Zeng Z-Q , Zhuang W-Y. A new species of Cosmospora and the first record of sexual state of C. lavitskiae . Mycol Prog . 2016 ; 15 : 59 . 

  47. 47 Miles LE. New species of fungi from Mississippi . Mycologia . 1926 ; 18 ( 4 ): 163 – 168 . 

  48. 48 Liu F , Bonthond G , Groenewald JZ , et al. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia . Stud Mycol . 2019 ; 92 : 287 – 415 . 30584265 

  49. 49 Thambugala KM , Wanasinghe DN , Phillips AJL , et al. Mycosphere notes 1-50: Grass (Poaceae) inhabiting Dothideomycetes . Mycosphere . 2017 ; 8 ( 4 ): 697 – 796 . 

  50. 50 Wijayawardene NN , Hyde KD , Bhat DJ , et al. Camarosporium–like species are polyphyletic in Pleosporales ; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae . Cryptogam Mycol . 2014 ; 35 ( 2 ): 177 – 198 . 

  51. 51 Crous PW , Schumacher RK , Wingfield MJ , et al. Fungal systematics and evolution: FUSE 1 . Sydowia . 2015 ; 67 : 81 – 118 . 

  52. 52 Wijayawardene NN , Hyde KD , Wanasinghe DN , et al. Taxonomy and phylogeny of dematiaceous coelomycetes . Fungal Divers . 2016 ; 77 ( 1 ): 1 – 316 . 

  53. 53 Thambugala KM , Daranagama DA , Phillips AJL , et al. Microfungi on Tamarix . Fungal Divers . 2017 ; 82 ( 1 ): 239 – 306 . 

  54. 54 Crous PW , Groenewald JZ. The genera of fungi - G 4: Camarosporium and Dothiora . IMA Fungus . 2017 ; 8 ( 1 ): 131 – 152 . 28824845 

  55. 55 Pelo SP , Adebo OA , Green E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) . Metabolomics . 2021 ; 17 ( 5 ): 43 . 33877446 

  56. 56 Persoon CH. Traite sur les champignons comestibles, contenant l'indication des espe ces nuisibles; a l'histoire des champignons . Paris : Belin-Leprieur ; 1818 . 

  57. 57 van der Aa HA. Studies in Phyllosticta I . Stud Mycol . 1973 ; 5 : 1 – 110 . 

  58. 58 Glienke-Blanco C , Aguilar-Vildoso CI , Vieira MLC , et al. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants . Genet Mol Biol . 2002 ; 25 ( 2 ): 251 – 255 . 

  59. 59 Wikee S , Udayanga D , Crous PW , et al. Phyllosticta : an overview of current status of species recognition . Fungal Divers . 2011 ; 51 ( 1 ): 43 – 61 . 

  60. 60 Wikee S , Lombard L , Nakashima C , et al. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales) . Stud Mycol . 2013 ; 76 ( 1 ): 1 – 29 . 24302788 

  61. 61 Wikee S , Lombard L , Crous PW , et al. Phyllosticta capitalensis , a widespread endophyte of plants . Fungal Divers . 2013 ; 60 ( 1 ): 91 – 105 . 

  62. 62 Lee B-H , Kim D-Y , Park H , et al. Identification of unrecorded endophytic fungi isolated from leaves of woody plants in Jejudo, Korea. K J Mycol . 2016 ; 44 ( 4 ): 252 – 258 . 

  63. 63 Rabenhorst L. Algen Europa’s, fortsetzung der algen sachsens, resp. Mittel-Europa’s. Dec 29–30. Nos 1281–1300 . Dresden . 1862 . 

  64. 64 Rossman AY , Samuels GJ , Rogerson CT , et al. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes) . Stud Mycol . 1999 ; 49 : 1 – 248 . 

  65. 65 Allescher A. Fungi imperfecti: gefärbt-sporige sphaerioideen . In: Rabenhorst’s Kryptogamen-Flora von Deutschland . Österreichund der Schweiz . 2nd ed . Leipzig : Kummer ; 1902 . p. 65 – 128 . 

  66. 66 De Silva NI , Phookamsak R , Maharachchikumbura SSN , et al. Monochaetia ilexae sp. nov. (Pestalotiopsidaceae) from Yunnan Province in China . Phytotaxa . 2017 ; 291 ( 2 ): 123 – 132 . 

  67. 67 Subramaniam Y , Subbiah R , Balan L , et al. Bioprospecting of bioactive metabolites from Monochaetia karsteni . J Pure Appl Microbiol . 2020 ; 14 ( 2 ): 1557 – 1566 . 

  68. 68 Zhao J , Zhou L , Wang J. Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas dA, editor . Current research, technology and education topics in applied microbiology and microbial biotechnology . Badajoz: Formatex Research Center; 2011 . p. 567 – 576 . 

  69. 69 Saccardo PA , Paoletti G. Mycetes malacenses. Funghi della penisola di malacca raccolti nel 1885 dell . Ab Benedetto Scortechini . 1888 ; 6 : 387 – 428 . 

  70. 70 Hyde KD , Eriksson OE , Yue JZ. Roussoëlla , an ascomycete genus of uncertain relationships with a Cytoplea anamorph . Mycol Res . 1996 ; 100 ( 12 ): 1522 – 1528 . 

  71. 71 Zhang J-YI , Phookamsak R , Boonmee S , et al. Roussoella guttulata (Roussoellaceae, Pleosporales), a novel bambusicolous ascomycete from Thailand . Phytotaxa . 2020 ; 471 ( 3 ): 221 – 233 . 

  72. 72 Phookamsak R , Hyde KD , Rajesh Jeewon R , et al. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi . Fungal Divers . 2019 ; 95 ( 1 ): 1 – 273 . 

  73. 73 Liu J-K , Phookamsak R , Dai D-Q , et al. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis . Phytotaxa . 2014 ; 181 ( 1 ): 1 – 33 . 

  74. 74 Poli A , Bovio E , Ranieri L , et al. News from the sea: a new genus and seven new species in the Pleosporalean families Roussoellaceae and Thyridariaceae . Diversity . 2020 ; 12 ( 4 ): 144 . 

  75. 75 Timnick MB , Lilly VG , Barnett HL. The effect of nutrition on the sporulation of Melanconium fuligineum in culture . Mycologia . 1951 ; 43 ( 6 ): 625 – 634 . 

  76. 76 Su Y-Y , Qi Y-L , Cai L. Induction of sporulation in plant pathogenic fungi . Mycology . 2012 ; 3 : 195 – 200 . 

  77. 77 Engelkes C , Nuclo R , Fravel D. Effect of carbon, nitrogen, and C: N ratio on growth, sporulation, and biocontrol efficacy of Talaromyces flavus . Phytopathology . 1997 ; 87 ( 5 ): 500 – 505 . 18945104 

  78. 78 Gao L , Liu X. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system . J Microbiol . 2010 ; 48 ( 6 ): 767 – 770 . 21221932 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로