$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

PP 분말/CNF 1 wt% 슬러리 복합체의 CNF 분산 및 물성에 대한 개질 PP의 영향
Effect of Modification PP on the Physical Properties and CNF Dispersion of PP Powder/CNF 1 wt% Slurry Composite 원문보기

공업화학 = Applied chemistry for engineering, v.33 no.3, 2022년, pp.284 - 288  

김준석 (한국자동차연구원 강소특구연구단) ,  김연철 (공주대학교 신소재공학부 고분자공학전공)

초록
AI-Helper 아이콘AI-Helper

폴리프로필렌(PP) 분말과 셀룰로오스 나노섬유(CNF) 1 wt% 슬러리 현탁액을 감압여과 및 오븐 건조한 후 이축압출기를 이용하여 PP 분말/CNF 1 wt% 슬러리 복합체를 제조하였다. PP는 곁가지 및 극성기가 도입된 개질 PP를 사용하였다. 곁가지는 디비닐벤젠을 이용하여 도입하였고 극성기는 말레인산무수물(MAH)을 이용하여 개질하였다. CNF의 분산성 및 복합체의 물성을 검토한 결과 PP 분말/CNF 1 wt% 슬러리로부터 제조한 복합체의 경우 CNF 분말로부터 제조한 복합체와 비교 시 인장강도 및 굴곡강도에서는 동등 이상 수준을 나타내는 것을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Polypropylene (PP) powder/cellulose nanofibers (CNF) 1 wt% slurry composites were prepared by filtering their suspension under reduced pressure and dried them in an oven followed by the use of a twin screw extruder. PP modified with side branches and polar groups was used. The side branches and pola...

주제어

표/그림 (8)

참고문헌 (20)

  1. C. Eyholzer. Dried nanofibrillated cellulose and its bionanocomposites, Ph.D. Dissertation, Lulea University of Technology, Sweden, (2011). 

  2. F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci.: Appl. Polym. Symp, 37, NY, USA, May 24 (1982). 

  3. G. H. D. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties, Carbohydr. Polym., 89, 80-88 (2012). 

  4. Q. Chen, R. P. Garcia, J. Munoz, U. Perez de Larraya, N. Garmendia, Q. Yao, and A. R. Boccaccini, Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance, ACS Appl. Mater. Interfaces, 7, 24715-24725 (2015). 

  5. B. Y. Kim, J. Moon, M. J. Yoo, S. Kim, J. Kim, and H. Yang, Surface-modified cellulose nanofibril surfactants for stabilizing oil-in-water emulsions and producing polymeric particles, Appl. Chem. Eng., 32, 110-116 (2021). 

  6. S. W. Kim and B. T. Yoon, Effect of nanocellulose on the mechanical and self-shrinkage properties of cement composites, Appl. Chem. Eng., 27, 380-385 (2016). 

  7. I. H. Hwang, S. Y. Choi, S. H. Lee, Y. H. Lee, S. M. Lee, S. C. Kim, and S. S. Kim, Electrospinning method-based CNF properties analysis and its application to electrode in electrolysis process, Appl. Chem. Eng., 28, 257-262 (2017). 

  8. M. A. Usmani, I. Khan, U. Gazal, M. K. Mohamad Haafiz, and A. H. Bhat, Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal, Compos. Sci. Eng., 441-463 (2018). 

  9. H. J. Yoon, B. M. Gil, J. H. Lee, J. E. Park, J. Lim, M. J. Jo, K. Jung, and J. J. Wie, Thermal and mechanical properties of polypropylene/cellulose nanofiber composites, Polymer (Korea), 44, 255-263 (2020). 

  10. J. C. Lee, J. A. Lee, D. Y. Lim, and K. Y. Kim, Fabrication of cellulose nanofiber reinforced thermoplastic composites, Fibers Polym., 19, 1753-1759 (2018). 

  11. A. Iwatake, M. Nogi, and H. Yano, (2008), Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103-2106 (2008). 

  12. T. Wang and L. T. Drzal, Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079-5085 (2012). 

  13. A. Bhatnagar and M. Sain, Processing of cellulose nanofiberreinforced composites, J. Reinf. Plast. Compos., 24, 1259-1268 (2005). 

  14. K. Yuwawech, J. Wootthikanokkhan, and S. Tanpicha, Effects of two different cellulose nanofiber types on properties of poly(vinyl alcohol) composite films, J. Nanomater., 1, 1-10 (2015). 

  15. H. Yano, H. Omura, Y. Honma, H. Okumura, H. Sano, and F. Nakatsubo, Designing cellulose nanofiber surface for high density polyethylene reinforcement, Cellulose, 25, 3351-3362 (2018). 

  16. H. M. Yadav, J. D. Park, H. C. Kang, J. Kim, and J. J. Lee, Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors, Nanomaterials, 11, 395-401 (2021). 

  17. J. S. Kim and Y. C. Kim, Effect of polypropylene branching and maleic anhydride graft on CNF dispersity of polypropylene (PP)/cellulose nanofiber (CNF) composite, Polymer (Korea), 44, 861-867 (2020). 

  18. F. H. Su and H. X. Huang, Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion, J. Appl. Polym. Sci., 116, 2557-2565 (2010). 

  19. L. Cui, Z. Zhou, Y. Zhang, X. Zhang, and W. Zhou, Rheological behavior of polypropylene/novolac blends, J. Appl. Polym. Sci., 106, 811-816 (2007). 

  20. C. R. Herrero and J. L. Acosta, Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)/polyphosphazene blends, Polym. J., 26, 786-796 (1994). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로