$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.54 no.12, 2022년, pp.4499 - 4513  

Dahyeon Woo (Department of Nuclear Eng., Seoul National Univ.) ,  Youho Lee (Department of Nuclear Eng., Seoul National Univ.)

Abstract AI-Helper 아이콘AI-Helper

Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burn...

주제어

참고문헌 (29)

  1. P.A.C. Raynaud, R.E. Einziger, Cladding stress during extended storage of high?burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312. 

  2. J. Kim, H. Yoon, D. Kook, Y. Kim, A study on the initial characteristics of domestic spent nuclear fuels for long term dry storage, Nucl. Eng. Technol. 45?(2013) 377-384. 

  3. J. Hamalainen, V. Suolanen, SAFIR2018-The Finnish Research Programme on?Nuclear Power Plant Safety 2015-2018: Interim Report, VTT Technical?Research Centre of Finland, VTT Technology, 2017, p. 387. No. 924. 

  4. Maciej Serda, Synteza i aktywnosc biologiczna nowych analogow tiosemi-karbazonowych chelatorow zelaza, Uniw. Slaski. (2013) 343-354, https://doi.org/10.2/JQUERY.MIN.JS. 

  5. L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry?storage: model fundamentals and sensitivity studies, Ann. Nucl. Energy 76?(2015) 54-62, https://doi.org/10.1016/J.ANUCENE.2014.09.032. 

  6. ARIS, Technical data (n.d.), https://aris.iaea.org/sites/burnup.html. (Accessed?27 May 2022). 

  7. G.R.-N.E. and Technology, undefined, Development of the ENIGMA Fuel Performance Code for Whole Core Analysis and Dry Storage Assessments, Koreascience.or.Kr., 2011, https://doi.org/10.5516/NET.2011.43.6.489 (n.d.). 

  8. V. V Rondinella, R.J.M. Konings, J.P. Glatz, P.D.W. Bottomley, T.A.G. Wiss,?D. Papaioannou, O. Benes, J.Y. Colle, C.T. Walker, S. Bremier, D. Serrano-Purroy,?D. Staicu, D. Manara, L. Vlahovic, P. Poml, T. Fanghanel, Properties and?Behaviour of Irradiated Fuel under Accident Conditions, International Atomic?Energy Agency (IAEA), 2012. IAEA-CNd209. 

  9. U.S. NRC, Cladding considerations for the transportation and storage of spent?fuel, Interim Staff Guidance-11 Rev 3 (2003). 

  10. Y. Rashid, R. Dunham, Creep Modeling and Analysis Methodology for Spent?Fuel in Dry Storage, Electric Power Research Institute Technical Report, 2001.?EPRI-1003135. 

  11. P. Bouffioux, S. Leclercq, C. Cappelaere, T. Bredel, Interim dry storage of PWR?spent fuel assemblies: development of a long term creep law to assess the fuel?cladding integrity. https://doi.org/10.1115/ICEM2001-1035, 2020, 201-205. 

  12. E.P. Simonen, E.R. Gilbert, DATING: A Computer Code for Determining?Allowable Temperatures for Dry Storage of Spent Fuel in Inert and Nitrogen?Gases, Pacific Northwest Lab., Richland, WA (USA), 1988. 

  13. International Atomic Energy Agency (IAEA), Durability of Spent Nuclear Fuels?and Facility Components in Wet Storage, International Atomic Energy Agency?(IAEA), 1998. No. TECDOC-1012. 

  14. F. Feria, L. Herranz, , J.P.-A. of N. Energy, undefined, On the Way to Enabling?FRAPCON-3 to Model Spent Fuel under Dry Storage Conditions: the Thermal?Evolution, Elsevier, 2015 (n.d.), https://www.sciencedirect.com/science/article/pii/S030645491500376X. (Accessed 27 May 2022). 

  15. J.A. Fort, D.J. Richmond, J.M. Cuta, S.R. Suffield, Thermal Modeling of the TN-32B Cask for the High Burnup Spent Fuel Data Project, Pacific Northwest?National Lab.(PNNL), Richland, WA (United States), 2019. 

  16. NuScale Power, NuFuel-HTP2™ Fuel and Control Rod Assembly Designs,?NuScale Power, LLC, 2017. 

  17. G.M. O'Donnell, H.H. Scott, R.O. Meyer, A New Comparative Analysis of LWR?Fuel Designs, Division of Systems Analysis and Regulatory Effectiveness, Office?of Nuclear, 2001. 

  18. N.E. Todreas, M.S. Kazimi, M. Massoud, Nuclear Systems Volume II: Elements?of Thermal Hydraulic Design, CRC Press, Boca Raton, 2021. 

  19. A. Mieloszyk, An Improved Structural Mechanics Model for the FRAPCON?Nuclear Fuel Performance Code, MS Thesis, Massachusetts Institute of Technology, 2012. 

  20. W. Lyon, A. Mai, W. Liu, N. Capps, J. Rashid, A. Machiels, K. Waldrop, Impact of?fuel-cladding bonding on the response of high burnup spent fuel subjected to?transportation accidents, Proc. Top Fuel, Prague Czech Republic. (2018).?September 30 - October 04. Paper No. A0118. 

  21. K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior?of Oxide Fuel Rods for High Burnup, vol. 1, Pacific Northwest National Laboratory, Richland, WA, 2015. 

  22. G. Sabol, G. Moan, Zirconium in the Nuclear Industry: Twelfth International?Symposium, ASTM International, West Conshohocken, 2000. 

  23. S. Kim, J. Kang, Y.L.-J. of N. Materials, undefined, Hydride Embrittlement?Resistance of Zircaloy-4 and Zr-Nb Alloy Cladding Tubes and its Implications?on Spent Fuel Management, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S0022311521006139. (Accessed 27 May 2022). 

  24. S. Bang, H. Kim, J. Noh, D. Kim, K. Keum, Y.L.-N.E. and, undefined, Temperature-dependent Axial Mechanical Properties of Zircaloy-4 with Various?Hydrogen Amounts and Hydride Orientations, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S1738573321006379. (Accessed?27 May 2022). 

  25. Y. Kim, D. Kook, T. Kim, J.K.-J. of N. Science, undefined, Stress and?temperature-dependent hydride reorientation of Zircaloy-4 cladding and its?effect on the ductility degradation, Taylor Fr 52 (2015) (2015) 717-727,?https://doi.org/10.1080/00223131.2014.978829. 

  26. D. Kim, D. Kim, D. Woo, Y.L.-J. of N. Materials, undefined, Development of an?Image Analysis Code for Hydrided Zircaloy Using Dijkstra's Algorithm and?Sensitivity Analysis of Radial Hydride Continuous Path, Elsevier, 2022 (n.d.),?https://www.sciencedirect.com/science/article/pii/S002231152200143X.?(Accessed 27 May 2022). 

  27. D. Kim, J. Kang, Y.L.- Materialia, undefined, Accurate Prediction of Threshold?Stress for Hydride Reorientation in Zircaloy-4 with Directly Measured Interface Orientation Relationship, Elsevier, 2022 (n.d.), https://www.sciencedirect.com/science/article/pii/S2589152921002933. (Accessed 27 May?2022). 

  28. P. Konarski, C. Cozzo, G.K.-J. of N., undefined, Spent Nuclear Fuel in Dry Storage?ConditionseCurrent Trends in Fuel Performance Modeling, Elsevier, 2021 (n.d.?https://www.sciencedirect.com/science/article/pii/S0022311521003615.?(Accessed 27 May 2022). 

  29. E. Gilbert, E. Simonen, C. Beyer, P. Medvedev, Update of CSFM Methodology?for Determining Temperature Limits for Spent Fuel Dry Storage in Inert Gas,?Pacific Northwest Lab, 2001. Richland, Wa. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로