$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Partitioning effects and corrosion characteristics of oxyapatite glass-ceramic wasteforms sequestering rare-earth elements 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.54 no.3, 2022년, pp.997 - 1002  

Kim, Miae (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ,  Kang, Jaehyuk (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ,  Yoon, Jang-Hee (Busan Centre, Korea Basic Science Institute) ,  Lee, Sang-Geul (Daegu Centre, Korea Basic Science Institute) ,  Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ,  Kim, Hyun Gyu (Busan Centre, Korea Basic Science Institute)

Abstract AI-Helper 아이콘AI-Helper

Oxyapatite[Ca2Nd8(SiO4)6O2] glass-ceramics have been suggested as wasteforms for the immobilisation of rare-earth radioactive nuclides because of their high waste-loading capability and good chemical durability. In particular, a partitioning effect is predicted to contribute to an enhancement of cor...

주제어

참고문헌 (24)

  1. I. Bardez, D. Caurant, F. Ribot, P. Loiseau, J. Dussossoy, F. Villain, N. Baffier, C. Fillet, Structural characterisations of rare earth-rich glasses for nuclear waste immobilisation, Mater. Res. Soc. Symp. Proc. 807 (2003), https://doi.org/10.1557/PROC-807-157. 

  2. J. Colombani, The alkaline dissolution rate of calcite, J. Phys. Chem. Lett 7 (2016) 2376-2380, https://doi.org/10.1021/acs.jpclett.6b01055. 

  3. J. Crum, V. Maio, J. McCloy, C. Scott, B. Riley, B. Benefiel, J. Vienna, K. Archibald, C. Rodriguez, V. Rutledge, Z. Zhu, J. Ryan, M. Olszta, Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment, J. Nucl. Mater. 444 (2014) 481-492, https://doi.org/10.1016/j.jnucmat.2013.10.029. 

  4. J.V. Crum, L. Turo, B. Riley, M. Tang, A. Kossoy, Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals, J. Am. Ceram. Soc. 95 (2012) 1297-1303, https://doi.org/10.1111/j.1551-2916.2012.05089.x. 

  5. A. Jarosikova, V. Ettler, M. Mihaljevic, B. Kribek, B. Mapani, The pH-dependent leaching behavior of slags from various stages of a copper smelting process: environmental implications, J. Environ. Manage. 187 (2017) 178-186, https://doi.org/10.1016/j.jenvman.2016.11.037. 

  6. M. Kim, J. Heo, Vitusite glass-ceramics wasteforms for immobilization of lanthanide wastes generated by pyro-processing, Ceram. Int. 41 (2015) 6132-6136, https://doi.org/10.1016/j.ceramint.2015.01.035. 

  7. M. Kim, J. Heo, Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing, J. Nucl. Mater. 467 (2015) 224-228, https://doi.org/10.1016/j.jnucmat.2015.09.040. 

  8. M. Kim, C.L. Corkhill, N.C. Hyatt, J. Heo, Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides, Sci. Rep. 8 (2018) 5320, https://doi.org/10.1038/s41598-018-23665-z. 

  9. M.A. Kim, J.H. Song, W. Um, N. Hyatt, S.-K. Sun, J. Heo, Structure analysis of vitusite glass-ceramic waste forms using extended x-ray absorption fine structures, Ceram. Int. 43 (2017) 4687-4691, https://doi.org/10.1016/j.ceramint.2016.12.129. 

  10. N.A. Krishnan, S. Mangalathu, M.M. Smedskjaer, A. Tandia, H. Burton, M. Bauchy, Predicting the dissolution kinetics of silicate glasses using machine learning, J. Non-Cryst. Solids 487 (2018) 37-45, https://doi.org/10.1016/j.jnoncrysol.2018.02.023. 

  11. I. Kumari, B. Kumar, A. Khanna, A review on UREX processes for nuclear spent fuel reprocessing, Nucl. Eng. Des. 358 (2020), 110410, https://doi.org/10.1016/j.nucengdes.2019.110410. 

  12. W. Lee, M. Ojovan, M. Stennett, N. Hyatt, Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3-12, https://doi.org/10.1179/174367606X81669. 

  13. J.S. McCloy, A. Goel, Glass-ceramics for nuclear-waste immobilization, MRS Bull. 42 (2017) 233-240, https://doi.org/10.1557/mrs.2017.8. 

  14. S. Gin, P. Jollivet, M. Tribet, S. Peuget, S. Schuller, Radionuclides containment in nuclear glasses: an overview, Radiochim. Acta 105 (2017) 927-959, https://doi.org/10.1515/ract-2016-2658. 

  15. B. Karmakar, K. Rademann, A.L. Stepanov, Glass Nanocomposites: Synthesis, Properties, and Applications, William Andrew, 2016. 

  16. H. Toraya, A new method for quantitative phase analysis using X-ray powder diffraction data: direct derivation of weight fractions from observed integrated intensities and chemical compositions of the individual phases, J. Appl. Crystallogr. 49 (2016) 1508-1516, https://doi.org/10.1107/S1600576716010451. 

  17. M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, Topological principles of borosilicate glass chemistry, J. Phys. Chem. B 115 (2011) 12930-12946, https://doi.org/10.1021/jp208796b. 

  18. J. Neeway, A. Abdelouas, B. Grambow, S. Schumacher, C. Martin, M. Kogawa, S. Utsunomiya, S. Gin, P. Frugier, Vapor hydration of SON68 glass from 90℃ to 200℃: a kinetic study and corrosion products investigation, J.non-cryst. Solid. 358 (2012) 2894-2905, https://doi.org/10.1016/j.jnoncrysol.2012.07.020. 

  19. A. Abdelouas, Y.E. Mendili, A.A. Chaou, G. Karakurt, C. Hartnack, J.-F. Bardeau, T. Saito, H. Matsuzaki, A preliminary investigation of the ISG glass vapour hydration, Int. J. Appl. Glass Sci. 4 (2013) 307-316, https://doi.org/10.1111/ijag.12055|. 

  20. S. Mohd Fadzil, P. Hrma, M.J. Schweiger, B.J. Riley, Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste, J. Nucl. Mater. 465 (2015) 657-663, https://doi.org/10.1016/j.jnucmat.2015.06.050. 

  21. J.A. Peterson, J.V. Crum, B.J. Riley, R.M. Asmussen, J.J. Neeway, Synthesis and characterization of oxyapatite [Ca 2 Nd 8 (SiO 4 ) 6 O 2 ] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO 4 ] for a glass-ceramic waste form, J. Nucl. Mater. 510 (2018) 623-634, https://doi.org/10.1016/j.jnucmat.2018.08.048. 

  22. J.J. Neeway, R.M. Asmussen, E.M. McElroy, J.A. Peterson, B.J. Riley, J.V. Crum, Kinetics of oxyapatite [Ca 2 Nd 8 (SiO 4 ) 6 O 2 ] and powellite [(Ca,Sr,Ba)MoO 4 ] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions, J. Nucl. Mater. 515 (2019) 227-237, https://doi.org/10.1016/j.jnucmat.2018.12.043. 

  23. N.Y. Mostafa, A.A. Shaltout, H. Omar, S.A. Abo-El-Enein, Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites, J. Alloys Compd. 467 (2009) 332-337, https://doi.org/10.1016/j.jallcom.2007.11.130. 

  24. Z. Tian, J. Zhang, L. Zheng, W. Hu, X. Ren, Y. Lei, J. Wang, General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300 ℃, Corrosion Sci. 148 (2019) 281-292, https://doi.org/10.1016/j.corsci.2018.12.032. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로