$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.54 no.4, 2022년, pp.1271 - 1287  

Park, Ji Hun (Department of Nuclear Engineering, Chosun University) ,  Jo, Hye Seon (Department of Nuclear Engineering, Chosun University) ,  Lee, Sang Hyun (Department of Nuclear Engineering, Chosun University) ,  Oh, Sang Won (Department of Nuclear Engineering, Chosun University) ,  Na, Man Gyun (Department of Nuclear Engineering, Chosun University)

Abstract AI-Helper 아이콘AI-Helper

When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends o...

주제어

참고문헌 (31)

  1. "Operational Performance Information System for Nuclear Power Plant", Nuclear Accident and Failure Status, 2020 last modified Oct 26, http://opis.kins.re.kr/opis?actKROBA3400R. (Accessed 13 January 2021). accessed. 

  2. J.M. Kim, G. Lee, C. Lee, S.J. Lee, Abnormality diagnosis model for nuclear power plants using two-stage gated recurrent units, Nucl. Eng. Technol. 52 (9) (2020) 2009-2016. 

  3. J. Yang, J. Kim, Accident diagnosis algorithm with untrained accident identification during power-increasing operation, Reliab. Eng. Syst. Saf. 202 (2020) 107032. 

  4. H. Kim, A.M. Arigi, J. Kim, Development of a diagnostic algorithm for abnormal situations using long short-term memory and variational autoencoder, Ann. Nucl. Energy 153 (2021) 108077. 

  5. K.H. Yoo, J.H. Back, M.G. Na, S. Hur, H. Kim, Smart support system for diagnosing severe accidents in nuclear power plants, Nucl. Eng. Technol. 50 (4) (2018) 562-569. 

  6. A. Ayodeji, Y.-k. Liu, Support vector ensemble for incipient fault diagnosis in nuclear plant components, Nucl. Eng. Technol. 50 (8) (2018) 1306-1313. 

  7. A. Ayodeji, Y.-k. Liu, H. Xia, Knowledge base operator support system for nuclear power plant fault diagnosis, Prog. Nucl. Energy 105 (2018) 42-50. 

  8. Y.-k. Liu, A. Ayodeji, Z.-b. Wen, M.-p. Wu, M.-j. Peng, W.-f. Yu, A cascade intelligent fault diagnostic technique for nuclear power plants, J. Nucl. Sci. Technol. 55 (3) (2018) 254-266. 

  9. M.-j. Peng, H. Wang, S.-s. Chen, G.-l. Xia, Y.-k. Liu, X. Yang, A. Ayodeji, An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nucl. Eng. Technol. 50 (3) (2018) 396-410. 

  10. R.L. Boring, K.D. Thomas, T.A. Ulrich, R.T. Lew, Computerized operator support systems to aid decision making in nuclear power plants, Procedia Manuf. 3 (2015) 5261-5268. 

  11. M.A. Kramer, Nonlinear principle component analysis using autoassociative neural networks, AIChE J. 37 (2) (1991) 233-243. 

  12. M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4-11. 

  13. R. Chalapathy, A.K. Menon, S. Chawla, Anomaly Detection Using One-Class Neural Networks, 2018 arXiv preprint arXiv: 1802.06360. 

  14. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780. 

  15. K. Cho, B. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation, arXiv preprint arXiv: 1406.1078, 2014. 

  16. J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Stat. 29 (5) (2001) 1189-1232. 

  17. J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (4) (2002) 367-378. 

  18. Ke Guolin, et al., LightGBM: a highly efficient gradient boosting decision tree, in: Proc. Advances in neural information processing systems, 2017, pp. 3146-3154. 

  19. A.B. Arrieta, et al., Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion 58 (2020) 82-115. 

  20. J.S. Bridle, Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition, Neurocomputing (1990) 227-236. 

  21. D. Gunning, Explainable Artificial Intelligence (XAI), Tech. Rep., Defense Advanced Research Projects Agency (DARPA), 2017. 

  22. S.M. Lundberg, G.G. Erion, Su-In Lee, Consistent Individualized Feature Attribution for Tree Ensembles, arXiv preprint arXiv:1802.03888, 2018. 

  23. S.M. Lundberg, et al., From local explanation to global understanding with explainable AI for trees, Nat Mach Intell 2 (1) (2020) 2522-5839. 

  24. L.S. Shapley, A.E. Roth, The Shapley Value: Essays in Honor of Lloyd S. Shapley, Cambridge University Press, 1988. 

  25. Hayes-Roth, Frederick, Rule-based systems, Commun. ACM 28 (9) (1985) 921-932. 

  26. J.-c. Park, Equipment and Performance Upgrade of Compact Nuclear Simulator, KAERI/RR-1967/1999, KAERI:Daejeon, Korea, 1999. 

  27. J. Miettinen, Development and assessment of the SBLOCA code SMABRE, in: Proceedings of the CSNI Specialists' Meeting on Small Break LOCA Analyses in LWRs vols. 23-27, June 1985, pp. 481-495. Pisa, Italy. 

  28. C. Tang, N. Luktarhan, Y. Zhao, An efficient intrusion detection method based on LightGBM and autoencoder, Symmetry 12 (9) (2020) 1458. 

  29. H.S. Hota, R. Handa, A.K. Shrivas, Time series data predicting using sliding window based RBF neural network, Int. J. Comput. Intell. Res. 13 (5) (2017) 1145-1156. 

  30. S.H. Park, J.M. Goo, C.H. Jo, Receiver operating characteristics (ROC) curve: practical review for radiologists, Korean J. Radiol. 5 (2004) 11-18. 

  31. J.N. Mandrekar, Receiver operating characteristic curve in diagnostic test assessment, J. Thorac. Oncol. 5 (9) (2010) 1315-1316. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로