$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

SiC 섬유강화 복합체는 경수형 원자로의 안전성을 획기적으로 향상시킬 수 있는 사고저항성 핵연료 피복관 소재이다. 지르코늄 합금 피복관 및 금속기반 사고저항성 핵연료 피복관에 비해, 중대 사고 환경에서도 우수한 구조적 안정성을 가지고 부식 속도가 매우 낮아, 사고 시 원자로의 온도를 낮추고 사고 진행을 늦출 수 있다. 본 논문에서는 현재 개발되고 있는 사고저항성 SiC 복합체 핵연료 피복관의 개념 및 가동/사고환경에서의 다양한 특성, 상용화를 위해 해결해야 할 다양한 이슈에 대해서 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

SiC fiber-reinforced SiC matrix composite is a promising accident-tolerant fuel cladding material to improve the safety of light water nuclear reactors. Compared to the current zirconium alloy fuel cladding as well as metallic accident-tolerant fuel cladding, SiC composite fuel cladding has exceptio...

주제어

표/그림 (24)

AI 본문요약
AI-Helper 아이콘 AI-Helper

후속연구

  • 원자력 에너지가 유럽 녹색 분류체계(EU Texsonomy)에 포함되고, 원자력 발전의 안전성 향상을 위해 사고저항성 핵연료 기술을 요구함에 따라, 빠른 시일 내에 대응가능한 사고저항성 코팅이 적용된 지르코늄 합금 피복관이 적용될 것으로 보인다. 그러나 코팅 지르코늄 합금 피복관의 부족한 사고저항성으로 인해, 대부분의 국가에서 차세대 사고저항성 핵연료 피복관 소재로 SiC 복합체를 선정하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (79)

  1. Kurata, M., "Research and Development Methodology for Practical Use of Accident Tolerant Fuel in Light Water Reactors," Nuclear Engineering and Technology, Vol. 48, No. 1, 2016, pp. 26-32. 

  2. Kim, H.-G., Yang, J.-H., Kim, W.-J., and Koo, Y.-H., "Development Status of Accident-Tolerant Fuel for Light Water Reactors in Korea," Nuclear Engineering and Technology, Vol. 48, No. 1, 2016, pp. 1-15. 

  3. Bischoff, J., Delafoy, C., Vauglin, C., Barberis, P., Roubeyrie, C., Perche, D., Duthoo, D., Schuster, F., Brachet, J.-C., Schweitzer, E.W., and Nimishakavi, K., "AREVA NP's Enhanced AccidentTolerant Fuel Developments: Focus on Cr-Coated M5 Cladding," Nuclear Engineering and Technology, Vol. 50, No. 2, 2018, pp. 223-228. 

  4. Charit, I., "Accident Tolerant Nuclear Fuels and Cladding Materials," Journal of Materials, Vol. 70, 2018, pp. 173-175. 

  5. Li, W., Shiran, K., Harrison, S., and Pegna, J., "Innovative Accident Tolerant Fuel Concept Enabled Through Direct Manufacturing Technology," Applied Energy, Vol. 264, 2020, pp. 114742. 

  6. Yamamoto, Y., Pint, B.A., Terrani, K.A., Field, K.G., Yang, Y., and Snead, L.L., "Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors," Journal of Nuclear Materials, Vol. 467, No. 2, 2015, pp. 703-716. 

  7. Lamarsh, J.R., and Baratta, A.J., Introduction to Nuclear Engineering, Prentice Hall, New Jersey, USA, 2001. 

  8. Terrani, K.A., "Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges," Journal of Nuclear Materials, Vol. 501, 2018, pp. 13-30. 

  9. Pint, B.A., Terrani, K.A., Yamamoto. Y., and Snead, L.L., "Material Selection for Accident Tolerant Fuel Cladding," Metallugical and Materials Transactions E, Vol. 2, 2015, pp. 190-196. 

  10. Yang, J., Steinbruck, M., Tang, C., Brosse, M., Liu, J., Zhang, J., Yun, D., and Wang, S., "Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding," Journal of Alloys and Compounds, Vol. 895, No. 1, 2022, 162450. 

  11. Kim, H.-G., Kim, I.-H., Jung, Y.-I., Park, D.-J., Park, J.-H., Choi, B.-K., and Lee, Y.-H., "Out-of-Pile Performance of SurfaceModified Zr Cladding for Accident Tolerant Fuel in LWRs," Journal of Nuclear Materials, Vol. 510, 2018, pp. 93-99. 

  12. Han, X., Wang, Y., Peng. S., and Zhang, H., "Oxidation Behavior of FeCrAl Coated Zry-4 under High Temperature Steam Environment," Corrosion Science, Vol 149, 2019, pp. 45-53. 

  13. Gigax, J.G., Kennas, M., Kim, H., Wang, T., Maier, B.R., Yeom, H., Johnson, G.O., Sridharan, K., and Shao, L., "Radiation Response of Ti2AlC MAX Phase Coated Zircaloy-4 for Accident Tolerant Fuel Cladding," Journal of Nuclear Materials, Vol. 523, 2019, pp. 26-32. 

  14. Brachet, J.C., Idarraga-Trujillo, I., Flem, M.L., Saux, M.L., Vandenberghe, V., Urvoy, S., Rousene, E., Guilbert, T., ToffolonMasclet, C., Tupin, M., Phalippou, C., Lomello, F., Schuster, F., Billard, A., Velisa, G., Ducros, C., and Sanchette, F., "Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors," Journal of Nuclear Materials, Vol. 517, 2019, pp. 268-285. 

  15. Umretiya, R.V., Elward, B., Lee, D., Anderson, M., Rebak, R.B., and Rojas, J.V., "Mechanical and Chemical Properties of PVD and Cold Spray Cr-Coatings on Zircaloy-4," Journal of Nuclear Materials, Vol. 541, 2020, pp. 152420. 

  16. Park, J.-H., Kim, H.-G., Park, J.-Y., Jung, Y.-I., Park, D.-J., and Koo, Y.-I., "High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings," Surface and Coatings Technology, Vol. 280, 2015, pp. 256-259. 

  17. Rainman, S.S., Field, K.G., Rebak, R.B., Yamamoto, Y., and Teranni, K.A., "Hydrothermal Corrosion of 2nd Generation FeCrAl Alloys for Accident Tolerant Fuel Cladding," Journal of Nuclear Materials, Vol. 536, 2020, 152221. 

  18. Terrani, K.A., Zinkle, S.J., and Snead, L.L., "Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding," Journal of Nuclear Materials, Vol. 448, 2014, pp. 420-435. 

  19. Hu, X., Terrani, K.A., Wirth, B.D., and Snead, L.L., "Hydrogen Permeation in FeCrAl Alloys for LWR Cladding Application," Journal of Nuclear Materials, Vol. 461, 2015, pp. 282-291. 

  20. Azevedo, C.R.F., "Selection of Fuel Cladding Material for Nuclear Fission Reactors," Engineering Failure Analysis, Vol. 18, 2011, pp. 1943-1962. 

  21. Katoh, Y., Snead, L.L, Szlufarska, I., and Weber, W.J., "Radiation Effects in SiC for Nuclear Structural Applications," Current Opinion in Solid State and Materials Science, Vol. 16, 2012, pp. 143-152. 

  22. Khatib-Rahbar, M., Krall, A., Yuan, Z., and Zavisca, M., Review of Accident Tolerant Fuel Concepts with Implications to Severe Accident Progression and Radiological Releases (ERI/NRC 20-209), Energy Research Inc, Mayland, USA, 2020. 

  23. Ichikawa, H., and Ishikawa, T., "Silicon Carbide Fibers Organometallic Pyrolysis)," Comprehensive Composite Materials II, Vol. 1, 2018, pp. 127-166. 

  24. Dicarlo, J.A., and Yun, H.-M., "Microstructural Factors Affecting Creep-Rupture Failure of Ceramic Fibers and Composites," Ceramic Transaction, Vol. 99, 1998, pp. 119-134. 

  25. Bansal, N.P., Handbook of Ceramic Composites, Kluwer Academic Publishers, Boston, USA, 2005. 

  26. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L., "Continuous SiC Fiber, CVI SiC Matrix Composites for Nuclear Applications: Properties and Irradiation Effects," Journal of Nuclear Materials, Vol. 448, 2014, pp. 448-476. 

  27. Sauder, C., Brusson, A., and Lamon, J., "Influence of Interface Characteristics on the Mechanical Properties of Hi-Nicalon Type-S or Tyranno-SA3 Fiber-Reinforced SiC/SiC Minicomposites," International Journal of Applied Ceramic Technology, Vol. 7, No. 3, 2010, pp. 291-303. 

  28. Lowden, R.A., and Stinton D.P., ''Interface Modification in Nicalon/SiC Composites,'' Ceramic Engineering and Science Proceedings, Vol. 9, No. 7-8, 1988, pp. 705-721. 

  29. Yang, W., Noda, T., Araki, H., Yu, J., and Kohyama, A., "Mechanical Properties of Several Advanced Tyranno-SA Fiber-Reinforced CVI-SiC Matrix Composites," Materials Science Engineering A, Vol. 345, 2003, pp. 28-35. 

  30. Bollmann, W., and Hennig, G.R., "Electron Microscope Observations of Irradiated Graphite Single Crystals," Carbon, Vol. 1, No. 4, 1964, 525-526. 

  31. Lee, H.-G., Kim, D., Park, J.Y., and Kim, W.-J., "Formation of Ti 3 SiC 2 Interphase Coating on SiC f /SiC Composite by Electrophoretic Deposition," International Journal of Applied Ceramic Technology, Vol. 15, 2018, pp. 602-610. 

  32. Li, M., Zhou, X., Yang, H., Du, S., and Huang, Q., "The Critical Issues of SiC Materials for Future Nuclear Systems," Scripta Materialia, Vol. 143, 2018, pp. 149-153. 

  33. Song, J.S., Kim, S., Baik, K.H., Woo, S., and Kim, S.-H., "Liquid Silicon Infiltrated SiC f /SiC Composites with Various Types of SiC Fiber," Composite Research, Vol. 30, No. 2, 2017, pp. 77-83. 

  34. Yin, J., Lee, S.-H., Feng, L., Zhu, Y., Liu, X., Huang, Z., Kim, S.-Y., and Han, I.-S., "The Effects of SiC Precursors on the Microstructures and Mechanical Properties of SiC f /SiC Composites Prepared via Polymer Impregnation and Pyrolysis Process," Ceramics International, Vol. 41, 2015, pp. 4145-4153. 

  35. Raju, K., Yu, H.-W., Park, J.-Y., and Yoon, D.-H., "Fabrication of SiC f /SiC Composites by Alternating Current Electrophoretic Deposition (AC-EPD) and Hot Pressing," Journal of the European Ceramic Society, Vol. 35, 2015, pp. 503-511. 

  36. Park, J.Y., Kim, D., and Kim, W.-J., "Fabrication of SiC f /SiC Composite by Chemical Vapor Infiltration," Composite Research, Vol. 30, No. 2, 2017, pp. 108-115. 

  37. Terrani, K.A., Ang, C., Snead, L.L., and Katoh, Y., "Irradiation Stability and Thermo-Mechanical Properties of NITE-SiC Irradiated to 10 dpa," Journal of Nuclear Materials, Vol. 499, 2018, pp. 242-247. 

  38. Sauder, C., Ceramic Matrix Composites: Nuclear Applications, in Ceramic Matrix Composites: Materials, Modeling and Technology, John Wiley & Sons, Inc., New Jersey, USA, 2014. 

  39. Wachs, D., "Characteristics of Accident Tolerant Fuel (ATF) for LWR Applications," Nuclear Waste Technical Review Board Web Meeting, May 2021. 

  40. Deck, C.P., Jacobsen, G.M., Sheeder, J., Gutierrez, O., Zhang, J., Stone, J., Khalifa, H.E., and Back, C.A., "Characterization of SiC-SiC Composites for Accident Tolerant Fuel Cladding," Journal of Nuclear Materials, Vol. 466, 2015, pp. 667-681. 

  41. Arregui-Mena, J.D., Koyanagi, T., Cakmak, E., Petrie, C.M., Kim, W.-J., Kim, D., Deck, C.P., Sauder, C., Braun, J., and Katoh, Y., "Qualitative and Quantitative Analysis of Neutron Irradiation Effects in SiC/SiC Composites Using X-ray Computed Tomography," Composite: Part B, Vo. 238, 2022, 109896. 

  42. Cohen, D., Mantell, S.C., and Zhao, L., "The Effect of Fiber Volume Fraction on Filament Wound Composite Pressure Vessel Strength," Composite: Part B, Vol. 32, 2001, pp. 413-429. 

  43. Kim, D., Lee, J., Park, J.Y., and Kim, W.-J., "Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of SiC f /SiC Composite Tubes," Journal of the Korean Ceramic Society, Vol. 50, No. 6, 2013, pp. 359-363. 

  44. Deck, C.P., Gonderman, S., Jacobsen, G.M., Sheeder, J., Oswald, S., Haefelfinger, R., Shapovalov, K.S., Khalifa, H.E., Gazza, J., Lyons, J., Xu, P., Koyanagi, T., Petrie, C., and Back, C.A., "Overview of General Atomics SiGA TM SiC-SiC Composite Development for Accident Tolerant Fuel," Transactions of the American Nuclear Society, Vol. 120, 2019, pp. 371-374. 

  45. Hong, J.H., Nuclear Materials, Hans House, Seoul, Korea, 2012. 

  46. Snead, L.L., Zinkle, S.J., Hay, J.C., and Osborne, M.C. "Amorphization of SiC under Ion and Neutron Irradiation," Nuclear Instruments and Methods in Physics Research B, Vol. 141, 1998, pp. 123-132. 

  47. Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.-S., Kondo, S., and Petti, D.A., "Handbook of SiC Properties for Fuel Performance Modeling," Journal of Nuclear Materials, Vol. 371, 2007, pp. 329-377. 

  48. Snead, L.L., and Zinkle, S.J., "Threshold Irradiation Dose for Amorphization of Silicon Carbide," MRS Online Proceedings Library, Vol. 439, 1997, pp. 595-606. 

  49. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L., "Continuous SiC Fiber, CVI SiC Matrix Composites for Nuclear Applications: Properties and Irradiation Effects," Journal of Nuclear Materials, Vol. 448, 2014, pp. 448-476. 

  50. Lee, Y., and Kazimi, M.S., "A Structural Model for Multi-Layered Ceramic Cylinders and Its Application to Silicon Carbide Cladding of Light Water Reactor Fuel," Journal of Nuclear Materials, Vol. 458, 2015, pp. 87-105. 

  51. Morris, R.N., Baldwin, C.A., Ellis, R.J., Giaquinto, J.M., Ott, L.J., Peterson, J.L., and Schmidlin, J.E., 20 Gwd SiC Clad Fuel Pin Examination(ORNL/TM-2014/102), Oak Ridge National Laboratory, Oak Ridge, USA, 2014. 

  52. Wang, J.-A.J., and Jiang, H., Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test (ORNL/TM-2012/462), Oak Ridge National Laboratory, Oak Ridge, USA, 2013. 

  53. Jacobsen, G.M., Stone, J.D., Khalifa, H.E., and Back, C.A., "Investigation of the C-ring Test for Measuring Hoop Tensile Strength of Nuclear Grade Ceramic Composites," Journal of Nuclear Materials, Vol. 452, 2014, pp. 125-132. 

  54. Byun, T.S., Lara-Curzio, E., Lowden, R.A., Snead, L.L., and Katoh, Y., "Miniaturized Fracture Stress Tests for Thin-Walled Tubular SiC Specimens," Journal of Nuclear Materials, Vol. 367- 370, 2007, pp. 653-658. 

  55. Bernachy-Barbe, F., Celebart, L., Bornert, M., Crepin, J., and Sauder, C., "Anisotropic Damage Behavior of SiC/SiC Composite Tubes: Multiaxial Testing and Damage Characterization," Composites: Part A, Vol. 76, 2015, pp. 281-288. 

  56. Kim, D., Lee, H.-G. Park, J.Y., and Kim, W.-J., "Fabrication and Measurement of Hoop Strength of SiC Triplex Tube for Nuclear Fuel Cladding Applications," Journal of Nuclear Materials, Vol. 458, 2015, pp. 29-36. 

  57. Koyanagi, T., Katoh, Y., Singh, G., and Snead, L.L., SiC/SiC Cladding Materials Properties Handbook (ORNL/TM-2017/385), Oak Ridge National Laboratory, Ork Ridge, USA, 2017. 

  58. Katoh, Y., Nozawa, T., Shih, C., Ozawa, K., Koyanagi, T., Porter, W., and Snead, L.L., "High-Dose Neutron Irradiation of HiNicalon Type S Silicon Carbide Composites. Part 2: Mechanical and Physical Properties," Journal of Nuclear Materials, Vol. 462, 2015, pp. 450-457. 

  59. Kim, W.-J., Hwang, H.S., Park, J.Y., and Ryu, W.-S., "Corrosion Behaviors of Sintered and Chemically Vapor Deposited Silicon Carbide Ceramics in Water at 360 o C," Journal of Materials Science Letters, Vol. 22, 2003, pp. 581-584. 

  60. Kim, W.-J., Hwang, H.S., and Park, J.Y., "Corrosion Behavior of Reaction-Bonded Silicon Carbide Ceramics in High-Temperature Water," Journal of Materials Science Letters, Vol. 21, 2002, pp. 733-735. 

  61. Henager Jr, C.H., Schemer-Kohrn, A.L., Pitman, S.G., Senor, D.J., Geelhood, K.J., and Painter, C.L., "Pitting Corrosion in CVD SiC at 300℃ in Deoxygenated High-purity Water," Journal of Nuclear Materials, Vol. 378, 2008, pp. 9-16. 

  62. Kim, D., Lee, H.-G., Park, J.Y., Park, J.-Y., and Kim, W.-J., "Effect of Dissolved Hydrogen on the Corrosion Behavior of Chemically Vapor Deposited SiC in a Simulated Pressurized Water Reactor Environment," Corrosion Science, Vol. 98, 2015, pp. 304-309. 

  63. Park, J.-Y., Kim, I.-H., Jung, Y.-I., Kim, H.-G., Park, D.-J., and Kim, W.-J., "Long-term Corrosion Behavior of CVD SiC in 360℃ Water and 400℃ Steam", Journal of Nuclear Materials, Vol. 433, 2013, pp. 603-607. 

  64. Kim, D., Lee, H.J., Jang, C., Lee, H.-G., Park, J.Y., and Kim, W.-J., "Influence of Microstructure on Hydrothermal Corrosion of Chemically Vapor Processed SiC Composite Tubes," Journal of Nuclear Materials, Vol. 492, 2017, pp. 6-13. 

  65. Han, J., Kim, D., Lee, H.-G., Kim, W.-J., Park, C., and Park, J.Y., "Influence of Crystallinity on the Corrosion Rate of Chemically Vapor-Infiltrated SiC f /SiC Composites under 310℃ Hydrothermal Condition," International Journal of Applied Ceramic Technology, Vol. 19, No. 1, pp. 258-267. 

  66. Katoh, Y., Koyanagi, T., Hu, X., Raiman, S., Petrie, C., Ang, C., Terrani, K., Kohse, G., Carpenter, D., Snead, L.L., Doyle, P.J., Xu, P., and Deck, C., "Evaluation of SiC/SiC Coating Needs & Technologies for Accident-Tolerant LWR Fuels," Proceedings of ICACC, Daytona Beach, USA, Jan. 2019. 

  67. Millett, P., PWR Primary Water Chemicstry Guidelines (TR-105714-V1R4), EPRI, California, USA, 1999. 

  68. Ang, C., Raiman, S., Burns, J., Hu, X., and Katoh, Y., Evaluation of the First Generation Dual-Purpose Coatings for SiC Cladding (ORNL/TM-2017/318), Oak Ridge National Laboratory, Oak Ridge, USA, 2017. 

  69. Do, A., Kim, D., Choi, H.-J., Kim, S.-W., Lim, S.-Y., Lee, H.-G., and Kim, W.-J., "Improvement in the Hydrothermal Corrosion Resistance of Ti-Based Nitride Coatings by Adding Cr for Accident Tolerant Fuel Cladding Applications," Journal of Nuclear Materials, Vol. 549, 2021, 152903. 

  70. Katoh, Y., Kohyama, A., Yang, W., Hinoki, T., Yamada, R., Suyama, S., Ito, M., Tachikawa, N., Sato, M., and Yamamura, T., "SiC/SiC Thermo-Physical Properties," International Town Meeting on SiC/SiC Design and Material Issues for Fusion Systems, Jan. 2000, Ork Ridge, USA. 

  71. Yamada, R., Igawa, N., and Taguchi, T., "Thermal Diffusivity/Conductivity of Tyranno SA Fiber- and Hi-Nicalon Type S Fiber-Reinforced 3-D SiC/SiC Composites," Journal of Nuclear Materials, Vol. 329-333, 2004, pp. 497-501. 

  72. Koyanagi, T., Wang, H., Mena, J.D.A, Petrie, C.M., Deck, C.P., Kim, W.-J., Kim, D., Sauder, C., Braun, J., and Katoh, Y., "Thermal Diffusivity and Thermal Conductivity of SiC Composite Tubes: the Effects of Microstructure and Irradiation," Journal of Nuclear Materials, Vol. 557, 2021, 153217. 

  73. Wang, H., Singh, R.N., and Lowden, R.A., "Thermal Shock Behavior of Two-Dimensional Woven Fiber-Reinforced Ceramic Composites," Journal of American Ceramic Society, Vol. 79, No. 7, 1996, pp. 1783-1792. 

  74. Webb, J.E., Singh, R.N., and Lowden R.A., "Thermal Shock Damage in a Two-Dimentional Woven-Fiber-Reinforced-CVI SiC-Matrix Composite," Journal of American Ceramic Society, Vol. 79, No. 11, 1996, pp. 2857-2864. 

  75. Lorrette, C., Guilbert, T., Bourlet, F., Sauder, C., Briottet, L., Palancher, H., Bischoff, J., and Pouillier, E., "Quench Behavior of SiC/SiC Cladding after a High Temperature Ramp under Steam Conditions," Proceeding of Water Reactor Fuel Performance Meeting, Jeju, Korea, Sep. 2017, hal-02417792. 

  76. Kim, D., Lee, D., Lee, S., Park, K., Lee, H.-G., Park, J.Y., and Kim, W.-J., "Thermal Shock Resistance and Hoop Strength of Triplex Silicon Carbide Composite Tubes," International Journal of Applied Ceramic Technology, Vol. 14, 2017, pp. 1069-1076. 

  77. Kim, D., Kim, W.-J., and Park, J.Y., "Compatibility of CVD SiC and SiC f /SiC Composites with High Temperature Helium Simulating Very High Temperature Gas-Cooled Reactor Coolant Chemistry," Oxidation of Metals, Vol. 80, 2013, pp. 389-401. 

  78. Jacobson, N.S., and Myers, D.L., "Active Oxidation of SiC," Oxidation of Metals, Vol. 75, 2011, pp. 1-25. 

  79. Zinkle, S.J., Terrani, K.A., Gehin, J.C., Ott, J.J., and Snead, L.L., "Accident Tolerant Fuels for LWRs: A Perspective," Journal of Nuclear Materials, Vol. 448, 2014, pp. 374-379. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로