$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Progress in Passive Radiative Cooling for Sustainable Energy Source 원문보기

Elastomers and composites = 엘라스토머 및 콤포지트, v.57 no.2, 2022년, pp.62 - 72  

Park, Choyeon (Department of Polymer Science and Engineering, Chungnam National University) ,  Park, Chanil (Advanced Materials Division, Korea Research Institute of Chemical Technology) ,  Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University) ,  Yoo, Youngjae (Department of Advanced Materials Engineering, Chung-Ang University)

Abstract AI-Helper 아이콘AI-Helper

Passive daytime radiative cooling (PDRC) is attracting increasing attention as an eco-friendly technology that can save cooling energy by not requiring an external power supply. An ideal PDRC structure should improve solar reflectance and emissivity within the atmospheric spectral window. Early desi...

주제어

표/그림 (6)

참고문헌 (57)

  1. E. A. Goldstein, A. P. Raman, and S. Fan, "Sub-Ambient Non-Evaporative Fluid Cooling with the Sky", Nat. Energy, 2, 17143 (2017). 

  2. X. Yu, J. Chan, and C. Chen, "Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches", Nano Energy, 88, 106259 (2021). 

  3. S. Fan and W. Li, "Photonics and Thermodynamics Concepts in Radiative Cooling", Nat. Photonics, 16, 182 (2022). 

  4. Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang, and M. Gu, "Photonics Empowered Passive Radiative Cooling", Adv. Photonics Res., 2, 202000106 (2021). 

  5. M. M. Hossain and M. Gu, "Radiative Cooling: Principles, Progress, and Potentials", Adv. Sci., 3, 1 (2016). 

  6. K. Te Lin, J. Han, K. Li, C. Guo, H. Lin, and B. Jia, "Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond", Nano Energy, 80, 105517 (2021). 

  7. B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, "Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects", Appl. Energy, 236, 489 (2019). 

  8. C. G. Granqvist and A. Hjortsberg, "Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films", J. Appl. Phys., 52, 4205 (1981). 

  9. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, "The Radiative Cooling of Selective Surfaces", Sol. Energy, 17, 83 (1975). 

  10. B. Orel, M. K. Gunde, and A. Krainer, "Radiative Cooling Efficiency of White Pigmented Paints", Sol. Energy, 50, 477 (1993). 

  11. A. R. Gentle and G. B. Smith, "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles", Nano Lett., 10, 373 (2010). 

  12. D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, "Radiative Sky Cooling: Fundamental Principles, Materials, and Applications", Appl. Phys. Rev., 6, 021306 (2019). 

  13. W. Li and S. Fan, "Radiative Cooling: Harvesting the Coldness of the Universe", Opt. Photonics News, 30, 32 (2019). 

  14. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight", Nature, 515, 540 (2014). 

  15. E. Rephaeli, A. Raman, and S. Fan, "Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling". Nano Lett., 13, 1457 (2013). 

  16. L. Zhu, A. Raman, and S. Fan, "Color-Preserving Daytime Radiative Cooling", Appl. Phys. Lett., 103, 22 (2013). 

  17. M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, "Passive Radiative Cooling Design with Broadband Optical Thin-Film Filters", J. Quant. Spectrosc. Radiat. Transf., 198, 1339 (2017). 

  18. S. Y. Jeong, C. Y. Tso, J. Ha, Y. M. Wong, C. Y. H. Chao, B. Huang, and H. Qiu, "Field Investigation of a Photonic Multi-Layered TiO 2 Passive Radiative Cooler in Sub-Tropical Climate", Renewable Energy, 146, 44 (2020). 

  19. Y. Zhou, Y. Liu, Y. Li, R. Jiang, W. Li, W. Zhao, R. Mao, L. Deng, and P. Zhou, "Flexible Radiative Cooling Material Based on Amorphous Alumina Nanotubes", Opt. Mater. Express, 10, 1641 (2020). 

  20. M. M. Hossain, B. Jia, and M. A. Gu, "Metamaterial Emitter for Highly Efficient Radiative Cooling", Adv. Opt. Mater., 3, 1047 (2015). 

  21. Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, and X. Luo, "Broadband Metamaterial as an "Invisible" Radiative Cooling Coat", Opt. Commun., 407, 204 (2018). 

  22. Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, "Daytime Passive Radiative Cooler Using Porous Alumina". Sol. Energy Mater. Sol. Cells, 191, 50x (2019). 

  23. J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, "Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling", 362, 315 (2018). 

  24. Y. Xu, B. Sun, Y. Ling, Q. Fei, Z. Chen, X. Li, P. Guo, N. Jeon, S. Goswami, Y. Liao, S. Ding, Q. Yu, J. Lin, G. Huang, and Z. Yan, "Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities", Proc. Natl. Acad. Sci. U. S. A., 117, 205 (2020). 

  25. A. Leroy, B. Bhatia, C. C. Kelsall, A. Castillejo-Cuberos, M. H. Di Capua, L. Zhao, L. Zhang, A. M. Guzman, and E. N. Wang, "High-Performance Subambient Radiative Cooling Enabled by Optically Selective and Thermally Insulating Polyethylene Aerogel", Sci. Adv., 5, 1 (2019). 

  26. M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, and N. Zhao, "Generalized Bioinspired Approach to a Daytime Radiative Cooling "Skin", 12, 25286 (2020). 

  27. M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, L. Pattelli, J. Xu, and D. S. Wiersma, "Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling", ACS Appl. Mater. Interfaces, 12, 25286 (2020). 

  28. J. Wang, J. Sun, T. Guo, H. Zhang, M. Xie, J. Yang, X. Jiang, Z. Chu, D. Liu, and S. Bai, "High-Strength Flexible Membrane with Rational Pore Architecture as a Selective Radiator for High-Efficiency Daytime Radiative Cooling", Adv. Mater. Technol., 7, 1 (2022). 

  29. T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, and L. A. Wu, "Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling", Nat. Commun., 12, 1 (2021). 

  30. D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, and S. Fan, "Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling", Nat. Nanotechnol, 16, 153 (2021). 

  31. S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, "Scalable Dual-Layer Film with Broadband Infrared Emission for Sub-Ambient Daytime Radiative Cooling", Sol. Energy Mater. Sol. Cells, 208, 110393 (2020). 

  32. A. Aili, Z. Y. Wei, Y. Z. Chen, D. L. Zhao, R. G. Yang, and X. B. Yin, "Selection of Polymers with Functional Groups for Daytime Radiative Cooling", Mater. Today Phys., 10, 100127 (2019). 

  33. S. Son, S. Jeon, D. Chae, S. Y. Lee, Y. Liu, H. Lim, S. J. Oh, and H. Lee, "Colored Emitters with Silica-Embedded Perovskite Nanocrystals for Efficient Daytime Radiative Cooling", Nano Energy, 79, 105461 (2021). 

  34. S. Y. Jeong, C. Y. Tso, Y. M. Wong, C. Y. H. Chao, and B. Huang, "Daytime Passive Radiative Cooling by Ultra Emissive Bio-Inspired Polymeric Surface", Sol. Energy Mater. Sol. Cells, 206, 110296 (2020). 

  35. H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, and T. Fan, "Biologically Inspired Flexible Photonic Films for Efficient Passive Radiative Cooling", Proc. Natl. Acad. Sci. U. S. A. 117, 14657 (2020). 

  36. R. A. Yalcin, E. Blandre, K. Joulain, and J. Drevillon, "Daytime Radiative Cooling with Silica Fiber Network", Sol. Energy Mater. Sol. Cells, 206, 110320 (2020). 

  37. W. Z. Song, X. X. Wang, H. J. Qiu, N. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, and Y. Z. Long, "Single Electrode Piezoelectric Nanogenerator for Intelligent Passive Daytime Radiative Cooling", Nano Energy, 82, 105695 (2021). 

  38. X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, and T. Fan, "Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling", Adv. Funct. Mater., 30, 1 (2020). 

  39. H. Kim, S. McSherry, B. Brown, and A. Lenert, "Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology", ACS Appl. Mater. Interfaces, 12, 43553 (2020). 

  40. L. Cai, A. Y. Song, W. Li, P. C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, and Y. Cui, "Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling", Adv. Mater., 30, 1 (2018). 

  41. B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, and X. Meng, "3D Porous Polymer Film with Designed Pore Architecture and Auto-Deposited SiO 2 for Highly Efficient Passive Radiative Cooling", Nano Energy, 81, 105600 (2021). 

  42. Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang, and Y. Shuai, "Efficient Radiative Cooling Coating with Biomimetic Human Skin Wrinkle Structure", Nano Energy, 89, 106377 (2021). 

  43. A. Sachenko, V. Kostylyov, I. Sokolovskyi, and M. Evstigneev, "Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells", IEEE J. Photovoltaics, 10, 63 (2020). 

  44. T. S. Safi and J. N. Munday, "Improving Photovoltaic Performance through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments", Opt. Express, 23, 1120 (2015). 

  45. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, "Radiative Cooling of Solar Cells", Optica, 1, 32 (2014). 

  46. L. Zhu, A. P. Raman, and S. Fan, "Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody", Proc. Natl. Acad. Sci. U. S. A., 112, 12282 (2015). 

  47. Z. Zhou, Z. Wang, and P. Bermel, "Radiative Cooling for Low-Bandgap Photovoltaics under Concentrated Sunlight", Opt. Express, 27, A404 (2019). 

  48. S. Y. Heo, D. H. Kim, Y. M. Song, and G. J. Lee, "Determining the Effectiveness of Radiative Cooler-Integrated Solar Cells", Adv. Energy Mater., 12, 103258 (2022). 

  49. M. Muselli, "Passive Cooling for Air-Conditioning Energy Savings with New Radiative Low-Cost Coatings", Energy Build., 42, 945 (2010). 

  50. A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, "Optimized Cool Roofs: Integrating Albedo and Thermal Emittance with R-Value", Sol. Energy Mater. Sol. Cells, 95, 3207 (2011). 

  51. X. Nie, Y. Yoo, H. Hewakuruppu, J. Sullivan, A. Krishna, and J. Lee, "Cool White Polymer Coatings Based on Glass Bubbles for Buildings", Sci. Rep., 10, 1 (2020). 

  52. A. R. Gentle and G. B. Smith, "A Subambient Open Roof Surface under the Mid-Summer Sun", Adv. Sci. 2015, 2, 2-5. https://doi.org/10.1002/advs.201500119. 

  53. X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, "Dynamic Gating of Infrared Radiation in a Textile", Science, 363, 619 (2019). 

  54. L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, and Y. Cui, "Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles", Joule, 3, 1478 (2019). 

  55. P. C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal Thermal Management by Metallic Nanowire-Coated Textile", Nano Lett., 15, 365 (2015). 

  56. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative Human Body Cooling by Nanoporous Polyethylene Textile", Science, 353, 1019 (2016). 

  57. S. Khan, J. Kim, K. Roh, G. Park, and W. Kim, "High Power Density of Radiative-Cooled Compact Thermoelectric Generator Based on Body Heat Harvesting", Nano Energy, 87, 106180 (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로