$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가
Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments 원문보기

한국산업보건학회지 = Journal of Korean Society of Occupational and Environmental Hygiene, v.32 no.2, 2022년, pp.153 - 162  

김성호 (안전보건공단 산업안전보건연구원 직업환경연구실) ,  박해동 (안전보건공단 산업안전보건연구원 직업환경연구실) ,  정은교 (오산대학교 산업안전보건과)

Abstract AI-Helper 아이콘AI-Helper

Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticle...

주제어

표/그림 (10)

참고문헌 (27)

  1. American National Standards Institute (ANSI). Standard method for testing and assessing particle and chemical emissions from 3D printers, 1st ed (ANSI/CAN/UL 2904-2019). 2019. p. 31-42 

  2. Azimi PH, Fazli TK, Stephens B. Predicting concentrations of ultrafine particles and volatile organic compounds resulting from desktop 3D printer operation and the impact of potential control strategies. J Inst Ecol. 2017.21(S1) (http://doi.org/10.1111/jiec.12578) 

  3. Azimi PH, Zhao D, Pouzet C, Crain NE, Stephens B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-demensional printers with multiple filaments. Environ Sci & Technol. 2016.50:1260-1268 (http://doi.org/10.1021/acs.est.5b04983) 

  4. Bernatikova S, Dudacek A, Prichystalova, Klecka V, Kocurkova L. Characterization of ultrafine particles and VOCs emitted from a 3D printer. Int J Environ Res and Publ Heal. 2021.18.929 (http://doi.org/10.3390/ijerph18030929) 

  5. Carlota V. Is PLA filament actually biodegradable? 3Dnatives. 2019 July (URL: http://3dnatives.com/en/pla-filament-230720194) 

  6. Davis A, Black M, Zhang Q, Shan JP, Weber R. Fine particulate and chemical emissions from consumer 3D printers. Environ Sci & Technol. 2019.53(20). 12054-12061 (http://doi.org/10.1021/acs/ets.9b04168) 

  7. Dean Lay. VOC emisson factors from 3D printers-ABS (acrylonitrile-butadiene-styrene) type filaments. LSU Master's theses. 2019. p. 120-144 

  8. Deng YI, Cao SJ, Chen A, Guo Y. The impact of manufacturing papameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build and Environ. 2016.104.311319 (http://doi.org/10.1016.j.buildenv.2016.05.021) 

  9. Digital manufacturing innovation team. 3D printing industry survey report in 2021. National IT industry promotion agency. 2022. p. 1-20 

  10. Digital manufacturing innovation team. 3D printing industry survey report in 2020. National IT industry promotion agency. 2021. p. 3-25 

  11. Floyd EL, Wang J, Regens JL. Fume emissions from a low-cost 3-D printer with various filaments. J Occup and Environ Hyg. 2017.14(7).523-533 (http://doi.org/ 10.1080/15459624.2017.1302587) 

  12. Jacobsen E, Nielsen IB, Eskesen JS, Lotus GL, Dobel S. Risk assessment of 3D printers and 3D printed products. Minstry of environment and food of Denmark. 2017. p. 30-74 (ISBN: 978-87-93614-00-0) 

  13. Kim SH, Chung EK, Kim SD, JH Kwon. Assessment of emitted volatile organic compounds, metals and characteristic of particle in commercial 3D printing service workplace. J Korean Soc of Occup and Environ Hyg. 2020.30(2): 153-162 (http://doi.org/10.15269/JKSOEH.2020.30.2.153) 

  14. Kim SH, Jung EK, Kim SD. Ultrafine particle, chemical and metal concentration from 3D printers in real 3D printing workplaces. Occuptional safety and health research institute. 2018. p. 60-92 

  15. Kim YN, Yoon CS, Ham SH, Park JH, Kim SH et al. Emissions of nanoparticles and gaseous material from 3D printer. Environ Sci & Technol. 2015.49:12044-12053 (http://doi.org/10.1021/acs.est.5b02805) 

  16. Kwon OH, Yoon CS, Ham SH, Park JH, Lee JH et al. Characterization and control of nanoparticle emission during 3D printing. Environ Sci & Technol. 2017.51.10357-10368 (http://doi.org/10.1021/acs/ets.7b01454) 

  17. Mendes L, Kangas A, Kukko K, Molgaard B, Saamanen A et al. Characterization of emissions from a desktop 3D printer. J Inst ecol. 2017.21(S1) (http://doi.org/10.1111/jiec.12569) 

  18. Ministry of employment and labor (Moel). Occupational health division. exposure limit values for chemicals and physical agents. (Moel public notice No. 2020-48) 2020. p. 4-70 

  19. Park JH, Jeon HJ, Oh YS, Park KH, Yoon CS. Understanding three-dimensional printing technology, evaluation, and control of hazardous exposure agents. J Korean Soc of Occup and Environ Hyg. 2018;28(3), 241-256 (http://doi.org/10.15269/JKSOEH.2018.28.3.241) 

  20. Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Ind Air. 2017.27.398-408 (http://doi.org/10.1111/ina.12310) 

  21. Stefaniak AB, Lebouf RF, Yi JH, Ham J, Nurkewicz T et al. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. J Occup and Environ Hyg. 2017.14(7).540-550 (http://doi.org/10.1080/15459624.2017.1302589) 

  22. Steinle P. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup and Environ Hyg. 2016.13(2).121-132 (http://doi.org/10.1080/15459624.5015.1091957) 

  23. Stephens B, Azimi PH, Orch ZE, Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmospheric environment. 2013.79.334-339 (http://doi.org/10.1016/j.atmosenv.2013.06.050) 

  24. Vance ME, Pegues V, Montfrans SV, Leng W, Marr LC. Aerosol emissions from fuse-deposition modeling 3D printers in a chamber and in real indoor environments. Environ Sci & Technol. 2017.51.9516-9523 (http://doi.org/10.1021/acs.est.7n01546) 

  25. Wohlers T, Campbell I, Diegel O, Huff R, Kowen J et al. Wohlers report 2020. Wohlers associates. 2020. p. 35-48 

  26. Yi JH, LeBouf RF, Duling MG, Nurkiewicz T, Chen BT et al. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol and Environ Heal, part A. 2016.79(11): 453-465 (http://doi.org/10.1080/15287394.2016.1166467) 

  27. Zhang Q, Wong JP, Davis AY, Black MS, Rodney J. Characterization of particle emissions from consumer fused deposition modeling 3D printer. Aerosol Sci and Technol. 2017.51(11).1275-1286 (http://doi.org/10.1080/02786826.2017.1342029) 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로