$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발
Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing 원문보기

로봇학회논문지 = The journal of Korea Robotics Society, v.17 no.3, 2022년, pp.282 - 287  

김다완 (Chemical Engineering, Sungkyunkwan University, Electronic and Electrical Engineering, Sungkyunkwan University, Mechanical Metrology Group, Korea Research Institute of Standards and Science)

Abstract AI-Helper 아이콘AI-Helper

High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we ...

주제어

참고문헌 (26)

  1. A. Ghosh, C. Yoon, F. Ongaro, S. Scheggi, F. M. Selaru, S. Misra, and D. H. Gracias, "Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery," Frontiers in Mechanical Engineering, 2017, DOI: 10.3389/fmech.2017.00007. 

  2. S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee, and C. Pang, "Bioinspired adhesive architectures: from skin patch to integrated bioelectronics," Advanced Materials, vol. 31, no. 34, 2019, DOI: 10.1002/adma.201803309. 

  3. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt "Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements," National Academy of Sciences of the United States of America, vol. 102, no. 45, 2005, DOI: 10.1073/pnas.0506328102. 

  4. J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, "Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators," Advanced Materials, vol. 28, no. 2, 2016, DOI: 10.1002/adma.201504264. 

  5. S. Licht, E. Collins, M. L. Mendes, and C. Baxter, "Stronger at depth: Jamming grippers as deep sea sampling tools," Soft Robotics, vol. 4, no. 4, 2017, DOI: 10.1089/soro.2017.0028. 

  6. Z. E. Teoh, B. T. Phillips, K. P. Becker, G. Whit tredge, J. C. Weaver, C. Hoberman, D. F. Gruber, and R. J. Wood, "Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms," Science Robotics, vol. 3, no. 20, 2018, DOI: 10.1126/scirobotics.aat5276. 

  7. N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, and R. J. Wood, "Ultragentle manipulation of delicate structures using a soft robotic gripper," Science Robotics, vol. 4, no. 33, 2019, DOI: 10.1126/scirobotics.aax5425. 

  8. Y. Wang, X. Yang, Y. Chen, D. K. Wainwright, C. P. Kenaley, Z. Gong, Z. Liu, H. Liu, J. Guan, T. Wang, J. C. Weaver, R. J. Wood, and L. Wen, "A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish," Science Robotics, vol. 2, no. 10, 2017, DOI: 10.1126/scirobotics.aan8072. 

  9. C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M.-G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B.-H. Tok, and Z. Bao, "Highly skin-conformal microhairy sensor for pulse signal amplification," Advanced Materials, vol. 27, no. 4, 2014, DOI: 10.1002/adma.201403807. 

  10. H. J. Lee, S. Baik, G. W. Hwang, J. H. Song, D. W. Kim, B. Park, H. Min, J. K. Kim, J. Koh, T.-H. Yang, and C. Pang, "An Electronically Perceptive Bioinspired Soft Wet-Adhesion Actuator with Carbon Nanotube-Based Strain Sensors," ACS Nano, vol. 15, no. 9, 2021, DOI: 10.1021/acsnano.1c05130. 

  11. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, "Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli," Advanced Materials, vol. 27, no. 28, 2015, DOI: 10.1002/adma.201501408. 

  12. T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, "Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes," ACS Nano, vol. 10, no. 4, 2016, DOI: 10.1021/acsnano.6b01355. 

  13. C. Pang, G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers," Nature Materials, vol. 11, 2012, DOI: 10.1038/nmat3380. 

  14. S. Sethi, L. Ge, L. Ci, P. M. Ajayan, and A. Dhinojwala, "Gecko-inspired carbon nanotube-based self-cleaning adhesives," Nano Letters, vol. 8, no. 3, 2008, DOI: 10.1021/nl0727765. 

  15. S. Hu, Z. Xia, and X. Gao, "Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications," ACS Applied Materials & Interfaces, vol. 4, no. 4, 2012, DOI: 10.1021/am201796k. 

  16. D. Brodoceanu, C. T. Bauer, E. Kroner, E. Arzt, and T. Kraus, "Hierarchical bioinspired adhesive surfaces-a review," Bioinspiration & Biomimetics, vol. 11, no. 5, 2016, DOI: 10.1088/1748-3190/11/5/051001. 

  17. L. F. Boesel, C. Greiner, E. Arzt , and A. del Campo, "Gecko-inspired surfaces: a path to strong and reversible dry adhesives," Advanced Materials, vol. 22, no. 19, 2010, DOI: 10.1002/adma.200903200. 

  18. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt, "Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements," National Academy of Sciences of the United States America, vol. 102, no. 45, 2005, DOI: 10.1073/pnas.0506328102. 

  19. S. Baik, D. W. Kim, Y. Park, T.-J. Lee, S. H. Bhang, and C. Pang, "A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi," Nature, vol. 546, 2017, DOI: 10.1038/nature22382. 

  20. L. Xue, B. Sanz, A. Luo, K. T. Turner, X. Wang, D. Tan, R. Zhang, H. Du, M. Steinhart, C. Mijangos, M. Guttmann, M. Kappl, and A. del Campo, "Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog," ACS Nano, vol. 11, no. 10, 2017, DOI: 10.1021/acsnano.7b04994. 

  21. P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, and J. P. Gong, "Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design," Advanced Materials, vol. 30, no. 32, 2018, DOI: 10.1002/adma.201801884. 

  22. J. Iturri, L. Xue, M. Kappl, L. G.-Fernandez, W. J. P. Barnes, H.-J. Butt, and A. del Campo, "Torrent frog-inspired adhesives: attachment to flooded surfaces," Advanced Materials, vol. 25, no. 10, 2015, DOI: 10.1002/adfm.201403751. 

  23. S. Chun, Y. Choi, D. I. Suh, G. Y. Bae, S. Hyun, and W. Park, "A tactile sensor using single layer graphene for surface texture recognition," Nanoscale, vol. 29, 2017, DOI: 10.1039/C7NR03748A. 

  24. J. K. A. Langowski, D. Dodou, M. Kamperman, and J. L. van Leeuwen, "Tree frog attachment: mechanisms, challenges, and perspectives," Frontiers in Zoology, vol. 15, no. 32, 2018, DOI: 10.1186/s12983-018-0273-x. 

  25. D. W. Kim, S. Baik, H. Min, S. Chun, H. J. Lee, K. H. Kim, J. Y. Lee, and C. Pang, "Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion," Advanced Functional Materials, vol. 29, no. 13, 2019, DOI: 10.1002/adfm.201807614. 

  26. A. Majumder, A. Ghatak, and A. Sharma, "Microfluidic adhesion induced by subsurface microstructures," Science, vol. 318, no. 5848, 2007, DOI: 10.1126/science.1145839. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로