$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구
Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study 원문보기

PNF and movement, v.20 no.2, 2022년, pp.295 - 306  

이하민 (단국대학교 보건복지대학원 임상물리치료학전공) ,  권중원 (단국대학교 공공보건대학 물리치료학과)

Abstract AI-Helper 아이콘AI-Helper

Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted g...

Keyword

표/그림 (6)

참고문헌 (45)

  1. Aprile I, Iacovelli C, Goffredo M, et al. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: clinical and gait outcomes from a pilot bi-centre study. NeuroRehabilitation. 2019;45(2):201-212. 

  2. Arnold JB, Mackintosh S, Olds TS, et al. Improvements in knee biomechanics during walking are associated with increased physical activity after total knee arthroplasty. Journal of Orthopaedic Research. 2015;33(12):1818-1825. 

  3. Audenaert EA, Peeters I, Vigneron L, et al. Hip morphological characteristics and range of internal rotation in femoroacetabular impingement. The American Journal of Sports Medicine, 2012;40(6):1329-1336. 

  4. Bang DH, Shin WS. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: a randomized controlled pilot trial. NeuroRehabilitation. 2016;38(4):343-349. 

  5. Barthuly AM, Bohannon RW, Gorack W. Gait speed is a responsive measure of physical performance for patients undergoing short-term rehabilitation. Gait & Posture. 2012;36(1):61-64. 

  6. Bennett D, Humphreys L, O'Brien S, et al. Gait kinematics of age-stratified hip replacement patients--a large scale, long-term follow-up study. Gait & Posture. 2008;28(2):194-200. 

  7. Bennett D, Ogonda L, Elliott D, et al. Comparison of gait kinematics in patients receiving minimally invasive and traditional hip replacement surgery: a prospective blinded study. Gait & Posture. 2006;23(3):374-382. 

  8. Bessler J, Prange-Lasonder GB, Schaake L, et al. Safety assessment of rehabilitation robots: a review identifying safety skills and current knowledge gaps. Frontiers in Robotics and AI. 2021;8:602878. 

  9. Brooks D, Davis AM, Naglie G. Validity of 3 physical performance measures in inpatient geriatric rehabilitation. Archives of Physical Medicine and Rehabilitation. 2006;87(1):105-110. 

  10. Calabro RS, Cacciola A, Berte F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurological Sciences. 2016;37(4):503-514. 

  11. Cardoso TB, Ocarino JM, Fajardo CC, et al. Hip external rotation stiffness and midfoot passive mechanical resistance are associated with lower limb movement in the frontal and transverse planes during gait. Gait & Posture. 2020;76:305-310. 

  12. Cheng PY, Lai PY. Comparison of exoskeleton robots and end-effector robots on training methods and gait biomechanics. International Conference on Intelligent Robotics and Applications. 2013;8102:258-266. 

  13. Coulter CL, Scarvell JM, Neeman TM, et al. Physiotherapist-directed rehabilitation exercises in the outpatient or home setting improve strength, gait speed and cadence after elective total hip replacement: a systematic review. Journal of Physiotherapy. 2013;59(4):219-226. 

  14. Ewen AM, Stewart S, St Clair Gibson A, et al. Post-operative gait analysis in total hip replacement patients-a review of current literature and meta-analysis. Gait & Posture. 2012;36(1):1-6. 

  15. Foucher KC, Wimmer MA. Contralateral hip and knee gait biomechanics are unchanged by total hip replacement for unilateral hip osteoarthritis. Gait & posture. 2012;35(1):61-65. 

  16. Goto K, Morishita T, Kamada S, et al. Feasibility of rehabilitation using the single-joint hybrid assistive limb to facilitate early recovery following total knee arthroplasty: a pilot study. Assistive Technology, 2017;29(4):197-201. 

  17. Hussein S, Schmidt H, Volkmar M, et al. Muscle activation of stroke patients during stair climbing in robot assisted gait training. 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008:875-880. 

  18. Jan MH, Lin CH, Lin YF, et al. Effects of weight-bearing versus nonweight-bearing exercise on function, walking speed, and position sense in participants with knee osteoarthritis: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation. 2009;90(6):897-904. 

  19. Jette DU, Hunter SJ, Burkett L, et al. Physical therapist management of total knee arthroplasty. Physical Therapy. 2020;100(9):1603-1631. 

  20. Joo SY, Lee SY, Cho YS, et al. Effects of robot-assisted gait training in patients with burn injury on lower extremity: a single-blind, randomized controlled trial. Journal of Clinical Medicine. 2020;9(9):2813. 

  21. Kim SY, Noh JH. Management of femoral peritrochanteric fracture with proximal femoral nail. Journal of the Korean Orthopaedic Association. 2006;41(3):541-546. 

  22. Kirker SG, Jenner JR, Simpson DS, et al. Changing patterns of postural hip muscle activity during recovery from stroke. Clinical Rehabilitation. 2000;14(6):618-626. 

  23. Koo KI, Hwang CH. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending for deafferentation, weight offloading and stereotyped movement: interim analysis. PLoS One. 2020;15(12):e0241117. 

  24. Labruyere R. van Hedel HJ. Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance. Journal of Neuroengineering and Rehabilitation. 2014;11:4. 

  25. Lang CE, MacDonald JR, Gnip C. Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. Journal of Neurologic Physical Therapy. 2007;31(1):3-10. 

  26. Li J, Wu T, Xu Z, et al. A pilot study of post-total knee replacement gait rehabilitation using lower limbs robot-assisted training system. European Journal of Orthopaedic Surgery & Traumatology. 2014;24(2):203-208. 

  27. Majumder S, Mondal T, Deen MJ. A simple, low-cost and efficient gait analyzer for wearable healthcare applications. IEEE Sensors Journal. 2018;19(6):2320-2329. 

  28. Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. Journal of Rehabilitation Medicine. 2012;44(3):193-199. 

  29. Nantel J, Termoz N, Centomo H, et al. Postural balance during quiet standing in patients with total hip arthroplasty and surface replacement arthroplasty. Clinical Biomechanics. 2008;23(4):402-407. 

  30. Norkin CC, White DJ. Measurement of joint motion: a guide to goniometry, 3th ed. Philadelphia. FA Davis. 2004. 

  31. Oosting E, Hoogeboom TJ, Appelman-de Vries SA, et al. Preoperative prediction of inpatient recovery of function after total hip arthroplasty using performance-based tests: a prospective cohort study. Disability and Rehabilitation. 2016;38(13):1243-1249. 

  32. Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. Journal of Geriatric Physical Therapy. 2013;36(1):24-30. 

  33. Roos EM. Effectiveness and practice variation of rehabilitation after joint replacement. Current Opinion in Rheumatology. 2003;15(2):160-162. 

  34. Sale P, Russo EF, Russo M, et al. Effects on mobility training and de-adaptations in subjects with spinal cord injury due to a wearable robot: a preliminary report. BMC Neurology. 2016;16:12. 

  35. Sanz-Morere CB, Martini E, Meoni B, et al. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study. Journal of Neuroengineering and Rehabilitation. 2021;18(1):111. 

  36. Sherrington C, Lord SR, Herbert RD. A randomized controlled trial of weight-bearing versus non-weight-bearing exercise for improving physical ability after usual care for hip fracture. Archives of Physical Medicine and Rehabilitation. 2004;85(5):710-716. 

  37. Srivastava S, Kao PC, Reisman DS, et al. Robotic assist-as-needed as an alternative to therapist-assisted gait rehabilitation. International Journal of Physical Medicine & Rehabilitation. 2016;4(5):370. 

  38. Stevens JE, Mizner RL, Snyder-Mackler L. Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. Journal of Orthopaedic & Sports Physical Therapy. 2004;34(1):21-29. 

  39. Straudi S, Benedetti MG, Venturini E, et al. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? a pilot randomized-control trial. NeuroRehabilitation. 2013;33(4):555-563. 

  40. Turner DL, Ramos-Murguialday A, Birbaumer N, et al. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Frontiers in Neurology. 2013;4:184. 

  41. van de Port IG, Kwakkel G, Lindeman E. Community ambulation in patients with chronic stroke: how is it related to gait speed? Journal of Rehabilitation Medicine. 2008;40(1):23-27. 

  42. van Kammen K, Boonstra AM, van der Woude LHV, et al. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disability and Rehabilitation. 2020;42(21):2977-2985. 

  43. Weidow J, Tranberg R, Saari T, et al. Hip and knee joint rotations differ between patients with medial and lateral knee osteoarthritis: gait analysis of 30 patients and 15 controls. Journal of Orthopaedic Research. 2006;24(9):1890-1899. 

  44. Witherspoon JW, Vasavada R, Logaraj RH, et al. Two-minute versus 6-minute walk distances during 6-minute walk test in neuromuscular disease: is the 2-minute walk test an effective alternative to a 6-minute walk test? European Journal of Paediatric Neurology. 2019;23(1):165-170. 

  45. Yeung LF, Ockenfeld C, Pang MK, et al. Design of an exoskeleton ankle robot for robot-assisted gait training of stoke patients. IEEE International Conference on Rehabilitation Robotics. 2017;2017:211-215. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로