$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

영남육괴에 기록된 고원생대 고온조산운동
Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.35 no.3, 2022년, pp.199 - 214  

이유영 (한국기초과학지원연구원 환경분석연구부) ,  조문섭 (서울대학교 지구환경과학부)

초록
AI-Helper 아이콘AI-Helper

영남육괴는 광역적인 고온-저압의 변성작용부분용융을 경험한 한반도 지각을 대표하는 기반암 중 하나이다. 이 논문에서는 지금까지 보고된 영남육괴 고온 변성암류에 기록된 백립암상의 변성작용과 부분용융 과정을 통해 고원생대(1.87-1.84Ga)의 고온조산운동 기록을 살펴본다. 특히 열원으로서의 역할을 담당했던, 산청-하동지역 회장암질 마그마를 비롯한 고철질 화성활동과 고온-저압 변성작용 사이의 시공간적 연계는 영남육괴의 광역변성작용과 지각용융을 이해하는데 필수적인 정보를 제공한다. 지각용융은 주로 함(含)유체 부분용융과 백운모/흑운모의 탈수용융에 의해 발생하였으며, 다양한 형태의 우백대와 우백질 화강암을 형성하였다. 이차이온질량분석기를 활용한 저어콘과 모나자이트의 암석연대학적 결과는 영남육괴의 고온변성작용과 부분용융이 약 1870-1854 Ma의 ~15 Ma 기간 동안 지속되었음을 지시한다. 또한, 초기 차노카이트로 대표되는 유체유입 사건이 약 1840 Ma에 발생하였다. 이와 같이 영남육괴 내에는 고온변성작용과 부분융용, 그리고 유체유입이라는 고온조산대를 대표하는 일련의 지질사건들이 기록되어 있다. 영남육괴에서 확인된 고온조산대는 북중국 지괴에서 흔히 보고되는 고원생대 조산운동과 연계되어 있으며, 고원생대 콜럼비아/누나 초대륙 진화의 최후기 산물이리라 판단된다.

Abstract AI-Helper 아이콘AI-Helper

The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massi...

주제어

표/그림 (5)

참고문헌 (103)

  1. Anderson, J.R., Kelsey, D.E., Hand, M. and Collins, W.J., 2013, Conductively driven, high-thermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia. Journal of Metamorphic Geology, 31, 1003-1026. 

  2. Arakawa, Y., Park, K.-H., Kim, N.-H., Song, Y.-S. and Amakawa, H., 2003, Geochemistry and tectonic implications of Proterozoic amphibolites in the northeastern part of the Yeongnam Massif, South Korea. Island Arc, 12, 180-189. 

  3. Ashwal, L.D. and Bybee, G.M., 2017, Crustal evolution and the temporality of anorthosites. Earth-Science Reviews, 173, 307-330. 

  4. Bea, F. and Montero, P., 1999, Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust; an example from the Kinzigite formation of IvreaVerbano, NW Italy. Geochimica et Cosmochimica Acta, 63, 1133-1153. 

  5. Beaumont, C., Jamieson, R. and Nguyen, M., 2010, Models of large, hot orogens containing a collage of reworked and accreted terranes. Canadian Journal of Earth Sciences, 47, 485-515. 

  6. Beaumont, C., Nguyen, M.H., Jamieson, R.A. and Ellis, S., 2006, Crustal flow modes in large hot orogens. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zone (eds Law, R.D., Searle, M.P. and Codin L.) The Geolgoical Society London Special Publications, 268, pp. 91-145. 

  7. Brown, M., 2007, Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review, 49, 193-234. 

  8. Brown, M., 2009, Metamorphic patterns in orogenic systems and the geological record. In Earth Accretionary Systems in Space and Time (eds Cawood, P.A. and Kroener, A.) The Geolgoical Society London Special Publications, 318, 37-74. 

  9. Brown, M., 2013. Granite: From genesis to emplacement. Geological Society of American Bulletin, 125, 1079-1113. 

  10. Brown, M. and Johnson, T., 2018, Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103, 181-196. 

  11. Chang, H.-W., Lee, D.-H. and Parkdfd, K.-H., 1993, Magmatism and metamorphism of the Proterozoic in the northeast-ern part of Korea: petrologic and geochemical characteristics of the Okbang amphibolites. Journal of the Korean Institute Mining Geology, 26, 489-498. 

  12. Cheong, C.-S., Kil, Y.-w., Kim, J., Jeong, Y.-J. and Im, C.B., 2004, Geochemical characteristics of Precambrian basement rocks in the Jukbyeon area, northeastern Yeongnam massif, Korea. Journal of the Geological Society of Korea, 40, 481-499 (in Korean with English abstract). 

  13. Cheong, W.S. and Na, K.C., 2008, Origin and evolution of leucogranite of NE Yeongnam Massif from Samcheok area, Korea. Journal of Petrological Society of Korea, 17, 16-35 (in Korean with English abstract). 

  14. Cho, D.-L., Lee, B.C. and Oh, C.W., 2020, Petrogenesis of Paleoproterozoic (2.02-1.96 Ga) metagranitoids in the southwestern Yeongnam Massif, Korean Peninsula, and their significance for the tectonic history of northeast Asia: Insights from zircon U-Pb-Hf isotope and whole-rock geochemical compositions. Precambrian Research, 340, 105631. 

  15. Cho, M., Cheong, W., Ernst, W.G., Kim, Y. and Yi, K., 2021, U-Pb detrital zircon ages of Cambrian-Ordovician sandstones from the Taebaeksan Basin, Korea: Provenance variability in platform shelf sequences and paleogeographic implications. Geological Society of America Bulletin, 133, 488-504. 

  16. Cho, M., Lee, Y., Kim, T., Cheong, W., Kim, Y. and Lee, S.R., 2017, Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: an overview. Geosciences Journal, 21, 845-865. 

  17. Cho, M., Min, K. and Kim, H., 2018, Geology of the 2018 Winter Olympic site, Pyeongchang, Korea. International Geology Review, 60, 267-287. 

  18. Choi, D.K., 2019, Evolution of the Taebaeksan Basin, Korea: I, early Paleozoic sedimentation in an epeiric sea and breakup of the Sino-Korean Craton from Gondwana. Island Arc, 28, e12275. 

  19. Choi, D.K. and Kim, E.Y., 2006, Occurrence of Changshani (Trilobita, Cambrian) in the Taebaeksan Basin, Korea and its stratigraphic and paleogeographic significance. Paleogeography, Paleoclimatology, Paleoecology, 242, 343-354. 

  20. Choi, S.J., Kim, D.-Y., Song, K.-Y., 2016, Geologic age of quartz schist-quartzite from Yeongam and Yeongsanpo areas around southwestern part of Ogcheon Belt. Economic and Environmental Sciences, 48, 155-165 (In Korean with English abstract). 

  21. Clark, C., Kirkland, C.L., Spaggiari, C.V., Oorschot, C., Wingate, M.T.D. and Taylor, R.J., 2014, Proterozoic granulite formation driven by mafic magmatism: an example from the Fraser Range Metamorphics, Western Australia. Precambrian Research, 240, 1-21. 

  22. Clemens, J.D., 2006, Melting of the continental crust: fluid regimes, melting relations, and source-rock fertility. In Evolution and Differentiation of the Continental Crust (eds Brown, M. and Rushmer, T.) Cambridge University Press, 296-331. 

  23. Corrigan, D. and Hanmer, S., 1997, Anorthosites and related granitoids in the Grenville orogen: a product of convective thinning of the lithosphere? Geology, 25, 61-64. 

  24. Emslie, R.F., 1985, Proterozoic anorthosite massifs. In The deep Proterozoic crust of the North Atlantic provinces (eds, Tobi, A.C. and Touret, J.L.R.) D. Reidel, Dordrecht, the Netherland, 39-60. 

  25. Endo, T., Tsunogae, T., Santosh, M., Shaji, E. and Rambeloson, R.A., 2017, Petrogenesis of incipient charnockite in the Ikalamavony sub-domain, south-central Madagascar: new insights from phase equilibrium modelling. Lithos, 282-283, 431-446. 

  26. Gardien, V., Thompson, A.B. and Ulmer, P., 2000, Melting of biotite + plagioclase + quartz gneisses: the role of H 2 O in the stability of amphibole. Journal of Petrology, 41, 651-666. 

  27. Glen, R.A., Percival, I.G., and Quinn, C.D., 2009, Ordovician contiental margin terranes in the Lachlan Orogen, Australia: implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics, 28, TC6012. 

  28. Gou, L.-L., Zhang, C.-L., Brown, M., Piccoli, P.M., Lin, H.-B. and Wei, X.-S., 2016, P-T-t evolution of pelitic gneiss from the basement underlying the Northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research 276, 67-84. 

  29. Ha, Y., Song, Y. and Kim, J.-M., 2014, Gwangju shear zone: Is it the tectonic boundary between the Yeongnam Massif and Okcheon metamorphic belt? Journal of the Petrological Society of Korea, 23, 17-30 (in Korean with English abstract). 

  30. Halpin, J.A., Clarke, G.L., White, R.W. and Kelsey, D.E., 2007, Contrasting P-T-t paths for Neoproterozoic metamorphism in MacRobertson and Kemp Lands, east Antarctica. Journal of Metamorphic Geology, 25, 683-701. 

  31. Heinonen, A., Andersen, T., Tapani Ramo, O. and Whitehouse, M.J., 2015, The source of Proterozoic anorthosite and rapakivi granite magmatism: evidence from combined in situ Hf-O isotopes of zircon in the Ahvenisto complex, southeastern Finland. Journal of the Geological Society, 172, 103-112. 

  32. Hodges, K.V., 2006, A synthesis of the channel flow-extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. Geological Society Special Publication, 268, 71-90. 

  33. Hoisch, T.D., 1990, Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology, 104, 225-234. 

  34. Isozaki, Y., 2019, A visage of early Paleozoic Japan: Geotectonic and paleobiogeographical significance of Greater South China. Island Arc, 28, e12296. 

  35. Jamieson, R.A. and Beaumont, C., 2013, On the origin of orogens. Geolgoical Society of America Bulletin, 125, 1671-1702. 

  36. Jeong, J.G., 1987, Magmatic differentiation of the anorthositic rocks in Hadong-Sancheong district, Korea. Journal of the Geological Society of Korea, 23, 216-228 (in Korean with English abstract). 

  37. Jiao, S.-J., Guo, J.-H., Wang, L.-J. and Peng, P., 2015, Shortlived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269, 31-57. 

  38. Johnson, T.E., Clark, C., Taylor, R.J.M., Santosh, M. and Collins, A.S., 2015, Prograde and retrograde growth of monazite in migmatites: an example from the Nagecoil Block, southern India. Geoscience Frontiers, 6, 373-387. 

  39. Johnson, T.E., Kirkland, C.L., Viete, D.R., Fischer, S., Reddy, S.M., Evans, N.J. and McDonald, B.J., 2017, Zircon geochronology reveals polyphase magmatism and crustal anatexis in the Buchan Block, NE Scotland: Implications for the Grampian Orogeny. Geoscience Frontiers, 8, 1469-1478. 

  40. Kang, J.-H. and Lee, D.-S., 2014, Genetic relationship and structural characteristics of the Fe-Ti ore body and the Sancheong anorthosite, Korea. Economic and Environmental Geology, 47, 571-588 (in Korean with English abstract). 

  41. Kang, J.-H. and Lee, D.-S., 2015, Formation process and its mechanism of the Sancheong anorthosite complex, Korea. Economic and Environmental Geology, 48, 431-449 (in Korean with English abstract). 

  42. Kee, W.-S., Kim, S.W., Kim, H., Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y. and Lee, B.C., 2019, 1:1,000,000 Geologic Map of Korea. Korea Institute of Geoscience and Mineral Resources. 

  43. Kelsey, D.E., Clark, C. and Hand, M., 2008, Thermobarometric modelling of zircon and monazite growth in meltbearing systems: examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26, 199-212. 

  44. Kim, D.-Y., Song, Y.-S. and Park, K.-H., 2002, Petrogenesis and metamorphism of charnockite of eastern Jirisan area. Journal of the Petrological Society of Korea, 11, 138-156 (in Korean with English abstract). 

  45. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implications for Paleoproterozoic crustal evolution. Precambrian Research 122, 235-251. 

  46. Kim, J.-I. and Choi, S.H., 2021, Petrogenesis and tectonic implications of the late Paleoproterozoic (ca. 1.7 Ga) postcollisional magmatism in the southwestern Gyeonggi Massif at Garorim Bay, South Korea. Journal of Asian Earth Sciences: X, 5, 100050. 

  47. Kim, J.-S., Ahn, S.-H., Cho, H., Song, C.-W., Son, M., Ryoo, C.-R. and Kim, I.-S., 2011, Occurrences of Fe-Ti ore bodies and mafic granulite in the Sancheong anorthosite, Korea. Journal of the Petrological Society of Korea, 20, 115-135 (in Korean with English abstract). 

  48. Kim, M.G. and Lee, Y.I., 2018, The Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Science Reviews, 185, 1170-1186. 

  49. Kim, N., Cheong, C.-S., Park, K.-H., Kim, J. and Song, Y.-S., 2012, Crustal evolution of northeastern Yeongnam Massif, Korea revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, 21, 865-875. 

  50. Kim, N., Cheong, C.-S., Yi, K., Song, Y.-S., Park, K.-H., Geng, J.-Z. and Li, H.-K., 2014a, Zircon U-Pb geochronological and Hf isotopic constraints on the Precambrian crustal evolution of the north-eastern Yeongnam Massif, Korea. Precambrian Research 242, 1-12. 

  51. Kim, N., Song, Y.-S., Park, K.-H. and Lee, H.S., 2009, SHRIMP U-Pb zircon ages of the granite gneisses from the Pyeonghae area of the northeastern Yeongnam Massif (Sobaeksan Massif). Journal of the Petrological Society of Korea, 18, 31-47. 

  52. Kim, S.W., Kwon, S., Yi, K. and Santosh, M., 2014b, Arc magmatism in the Yeongnam massif, Korean Peninsula: Imprints of Columbia and Rodinia supercontinents. Gondwana Research, 26, 1009-1027. 

  53. Kohn, M.J., 2016, Metamorphic chronology?a tool for all ages: Past achievements and future prospects. American Mineralogist, 101, 25-42. 

  54. Kwon, S.T. and Jeong, J.G., 1990, Preliminary Sr-Nd isotope study of the Hadong-Sancheong anorthositic rocks in Korea: Implication for their origin and for the Precambrian tectonics. Journal of the Geological Society of Korea, 26, 341-349. 

  55. Kwon, Y.W., Oh, C.W. and Kim, H.S., 2003, Granulite-facies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122, 253-273. 

  56. Lee, B.C., Oh, C.W., Cho, D.-L. and Yi, K., 2019, Paleoproterozoic (2.0-1.97 Ga) subduction-related magmatism on the north-central margin of the Yeongnam Massif, Korean Peninsula, and its tectonic implications for reconstruction of the Columbia supercontinent. Gondwana Research, 72, 3-53. 

  57. Lee, B.C., Oh, C.W. and Wang, X., 2020, Paleoproterozoic (ca. 1.87-1.69 Ga) arc-related tectonothermal events on northcentral Yeongnam Massif, South Korea and its tectonic implications: Insights from metamorphism, geochemistry and geochronology. Precambrian Research, 338, 105562. 

  58. Lee, B.C., Park, J.H., Oh, C.W. and Yi, K., 2017a, Metamorphic and magmatic evolution of the Paleoproterozoic gneisses in the Sancheong area, Yeongnam Massif, South Korea, and their implications to the tectonics in the Northeast Asia. Precambrian Research, 298, 439-461. 

  59. Lee, D.-S. and Kang, J.-H., 2012, Geological structures of the Hadong northern anorthosite complex and its surrounding area in the Jirisan Province, Yeongnam Massif, Korea. Journal of the Petrological Society of Korea, 21, 287-307 (in Korean with English abstract). 

  60. Lee, D.-S. and Kang, J.-H., 2013, Deformational phased structural characteristics of the Hadong southern anorthosite complex and its surrounding area in the Jirisan Province, Yeongnam Massif, Korea. Journal of the Petrological Society of Korea, 22, 179-195 (in Korean with English abstract). 

  61. Lee, K.-S., Cheong, C.-S., Park, K.-H. and Chang, H.-W., 1997, Geochemical and Sm-Nd isotopic study of amphibolite from the Muju area, Korea. Economic and Environmental Geology, 30, 313-320 (in Korean with English abstract). 

  62. Lee, S.-G., Asahara, Y., Tanaka, T., Kim, N.H., Kim, K.H., Yi, K., Masuda, A. and Song, Y.S., 2010, La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern. Chemical Geology, 276, 360-373. 

  63. Lee, S.R. and Cho, K., 2012, Precambrian crustal evolution of the Korean Peninsula. Journal of the Petrological Society of Korea, 21, 89-112 (in Korean with English abstract). 

  64. Lee, S.R. and Walker, R.J., 2006. Re-Os isotope systematics of mantle xenoliths from South Korea: evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. 

  65. Lee, Y. and Cho, M., 2020, Fluid-present partial melting of Paleoproterozoic Okbang amphibolite in the Yeongnam Massif, Korea. Lithosphere, 2020, 8854615. 

  66. Lee, Y., Cho, M., Cheong, W. and Yi, K., 2014, A massif-type (-1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova, 26, 408-416. 

  67. Lee, Y., Cho, M., Cheong, W. and Yi, K., 2018, Prolonged high-temperature, low-pressure metamorphism associated with -1.86 Ga Sancheong-Hadong anorthosite in the Yeongnam Massif, Korea: Paleoproterozoic hot orogenesis in the North China Craton. Precambrian Research 307, 175-200. 

  68. Lee, Y., Cho, M., Kim, T. and Kim, H., 2021, Incipient charnockite formation at the waning stage of Paleoproterozoic hot orogenesis, Yeongnam Massif, Korea. Precambrian Research, 365, 106388. 

  69. Lee, Y., Cho, M. and Yi, K., 2017b, In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ~1.86 Ga massif-type anorthosite. Jouranl of Asian Earth Sciences, 138, 629-646. 

  70. Lee, Y.I., Choi, T. and Orihashi, R., 2011, LA-ICP-MS zircon ages of the Precambrian Yuli Group. Journal of the Geological Society of Korea, 47, 81-87 (in Korean with English abstract). 

  71. McLelland, J.M., Selleck, B.W., Hamilton, M.A. and Bickford, M.E., 2010, Late- to post-ectonic setting of some major Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suites. Canadian Mineralogist, 48, 729-750. 

  72. Morfin, S., Sawyer, E.W. and Bandyayera, D., 2014, The geochemical signature of a felsic injection complex in the continental crust: Opinaca Subprovince, Quebec. Lithos, 196-197, 339-355. 

  73. Morisset, C.-E., Scoates, J.S., Weis, D. and Friedman, R.M., 2009, U-Pb and 40 Ar/ 39 Ar geochronology of the Saint-Urban and Lac Allard (Havre-Saint-Pierre) anorthosites and their associated Fe-Ti oxide ores, Quebec: evidence for emplacement and slow cooling during the collisional Ottawan orogeny in the Grenville Province. Precambrian Research, 174, 95-116. 

  74. Nabelek, P.I., 2019, Petrogenesis of leucogranites in collisional orogens. In Post-Archean Granitic Rocks: Petrogenetic Process and Tectonic Environments (eds, Janousek, V., Bonin, B., Collins, W.J., Farian, F. and Bowden, P.) The Geolgoical Society London Special Publications, 491, 179-207. 

  75. Naney, M.T., 1983, Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science, 283, 993-1033. 

  76. Naney, M.T. and Swanson, S.E., 1980, The effect of Fe and Mg on crystallization in granitic systems. American Mineralogist, 65, 639-653. 

  77. Newton, R.C., 1992, Charnockitic alteration: evidence for CO 2 infiltration in granulite facies metamorphism. Journal of Metamorphic Geology, 10, 383-400. 

  78. Newton, R.C., Smith, J.V. and Windley, B.F., 1980, Carbonic metamorphism, granulites and crustal growth. Nature, 288, 45-50. 

  79. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. 

  80. Oh, C.W., Lee, B.C., Yi, S.-B. and Ryu, H.I., 2019. Correlation of Paleoproterozoic igneous and metamorphic events of the Korean Peninsula and China; Its implication to the tectonics of Northeast Asia. Precambrian Research, 326, 344-362. 

  81. Park, K.-H., Kim, D.-Y. and Song, Y.-S., 2001, Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. Journal of the Petrological Society of Korea, 10, 27-35 (in Korean with English abstract). 

  82. Peng, P., Wang, X., Windley, B.F., Guo, J., Zhai, M. and Li, Y., 2014, Spatial distribution of ~1950-1800 Ma metamorphic events in the North China Craton: implications for tectonic subdivision of the craton. Lithos, 202-203, 250-266. 

  83. Pyle, J.M., Spear, F.S., Rudnick, R.L. and McDonough, W.F., 2001, Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. Journal of Petrology, 42, 2083-2107. 

  84. Qian, J., Wei, C., Zhou, X. and Zhang, Y., 2013, Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research 233, 282-296. 

  85. Regan, S.P., Chiarenzelli, J.R., McLelland, J.M. and Cousens, B.L., 2011, Evidence for an enriched asthenospheric source for coronitic metagabbro in the Adirondack Highlands. Geosphere, 7, 694-709. 

  86. Rivers, T., 2008, Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province-Implications for the evolution of large hot long-duration orogens. Precambrian Research 167, 237-259. 

  87. Santosh, M., Liu, D., Shi, Y. and Liu, S.J., 2013, Paleoproterozoic accretionary orogenesis in the North China Craton: a SHRIMP zircon study. Precambrian Research, 227, 29-54. 

  88. Sawyer, E.W., 2008, Atlas of Migmatites. The Canadian Mineralogist, Speical Publication 9, NRC Research Press, Ottawa, 371p. 

  89. Skipton, D.R., St-Onge, M.R., Schneider, D.A., McFarlane, C.R.M., 2016, Tectonothermal evolution of the middle crust in the Trans-Hudson orogen, Baffin Island, Canada: evidence from petrology and monazite geochronology of sillimanitebearing migmatites. Journal of Petrology 57, 1437-1462. 

  90. Song, Y.-S., 1999, Granulite xenoliths in porphyroblastic gneiss from Mt. Jiri area, SW Sobaegsan massif, Korea. Journal of the Petrological Society of Korea, 8, 34-45 (in Korean with English abstract). 

  91. Spear, F.S., Kohn, M.J. and Cheney, J.T., 1999, P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology, 134, 17-32. 

  92. Tang, L. and Santosh, M., 2018, Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: an overview from the central segment of the TransNorth China Craton. Earth-Science Reviews, 182, 1-27. 

  93. Vielzeuf, D. and Motel, J.M., 1994, Partial melting of metagreywackes. Part 1. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375-393. 

  94. Wang, Y., Zhou, L, Zhao, L, Ji, M., and Gao, H., 2010, Paleozoic uplands and unconformity in the North China Block: constraints from zircon LA-ICP-MS dating and geochemical analysis of Bauxite. Terra Nova, 22, 264-273. 

  95. Ward, R., Stevens, G., and Kisters, A., 2008, Fluid and deformation induced partial melting and melt volume in low-temperature granulite-facies metasediments, Damara Belt, Namibia. Lithos, 105, 253-271. 

  96. Weinberg, R.F. and Hasalova, P., 2015, Water-fluxed melting of the continental crust: a review. Lithos, 212-215, 158-188. 

  97. Wing, B,A., Ferry, J.M. and Harrison, T.M., 2003. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228-250. 

  98. Wolf, M.B. and London, D., 1995, Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. American Mineralogist, 80, 765-775. 

  99. Wu, J.-L., Zhang, H.-F., Zhai, M.-G., Guo, J.-H., Liu, L., Yang, W.-Q., Wang, H.-Z., Zhao, L., Jia, X.-L. and Wang, W., 2016, Discovery of pelitic high-pressure granulite from Manjinggou of the Huai'an Complex, North China Craton: metamorphic P-T evolution and geological implications. Precambrian Research, 278, 323-336. 

  100. Xu, W. and Liu F., 2019, Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 193, 162-198. 

  101. Yakymchuk, C. and Brown, M., 2014, Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171, 465-479. 

  102. Zhao, G., Cawood, P.A., Wilde, S.A. and Sun, M., 2002, Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Sciences Reviews, 59, 128-162. 

  103. Zhao, G., Cawood, P.A., Li, S.-Z., Wilde, S.A., Sun, M., Zhang, J., He, Y.-H. and Yin, C.-Q., 2012, Amalgamation of the North China Craton: key issues and discussion. Precambrian Research, 222-223, 53-76. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로