$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

경기육괴 남서부 유구 지역 금계산에 분포하는 각섬암류 내 각섬석의 격자선호방향
Lattice Preferred Orientation of Amphibole in Amphibole-rich Rocks from Mt. Geumgye, Yugu, Gyeonggi Massif, South Korea 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.35 no.3, 2022년, pp.259 - 271  

김준하 (서울대학교 지구환경과학부) ,  정해명 (서울대학교 지구환경과학부)

초록
AI-Helper 아이콘AI-Helper

광물의 격자구조가 특정한 방향성을 보이는 격자선호방향은 광물의 변형 조건에 따라 다르기 때문에, 해당 광물과 이를 포함한 암석의 변형 조건을 연구하는데 있어 유용하다. 이번 연구에서는 경기육괴의 남서부지역에 위치한 유구읍 추계리 금계산 일대의 각섬암류를 채취하여 암석내부 각섬석장석의 격자선호방향을 후방산란전자회절 기기를 사용하여 분석하였다. 분석결과 유구지역의 각섬석에서는 type IV와 type I 두가지 격자선호방향이 관찰되었다. 유구지역의 각섬암류 내 각섬석은 격자선호방향에 관계없이 강체회전에 의해 변형을 받은것으로 보이며, 암석의 변형정도가 결정입도와 격자선호방향에 영향을 준 것으로 생각된다. 각섬석의 결정입도가 커서 변형을 가장 작게 받은것으로 생각되는 시료에서는 각섬석이 강한 type I 격자선호방향을 보여주었다. 이에 반해, 각섬석의 결정입도가 작아 고변형을 받은 것으로 생각되는 시료들에서는 각섬석이 약한 type IV 격자선호방향을 보여 주었다. 유구지역에서 관찰되는 다양한 암석의 변형정도는 각섬암류와 인접해있는 페리도타이트에서도 관찰된 바 있어, 유구지역이 다양한 수준의 변형을 받았음을 지시한다.

Abstract AI-Helper 아이콘AI-Helper

Lattice preferred orientation (LPO), which shows a specific lattice-orientation of minerals, is affected by the deformation conditions of minerals. Because of this reason, LPO is very useful to study the deformation conditions of the minerals and the rocks. In this study, we collected amphibole-rich...

주제어

표/그림 (7)

참고문헌 (54)

  1. Allison, I. and Tour, T.E.L., 1977, Brittle deformation of hornblende in a mylonite: a direct geometrical analogue of ductile deformation by translation gliding. Canadian Journal of Earth Sciences, 14, 1953-1958. 

  2. Almqvist, B.S. and Mainprice, D., 2017, Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 55, 367-433. 

  3. Aspiroz, M.D., Lloyd, G. and Fernandez, C., 2007, Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain). Journal of Structural Geology, 29, 629-645. 

  4. Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y. I. and Hisada, K. I., 2008, Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: implications for its origin and hydration process. Island Arc, 17, 485-501. 

  5. Babaie, H.A. and La Tour, T.E., 1994, Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone. Tectonophysics, 229, 19-30. 

  6. Bachmann, F., Hielscher, R. and Schaeben, H, 2011, Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm. Ultramicroscopy, 111, 1720-1733. 

  7. Barruol, G. and Kern, H., 1996, Seismic anisotropy and shearwave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone-experimental and calculated data. Physics of the Earth and Planetary Interiors, 95, 175-194. 

  8. Berger, A. and Stunitz, H., 1996, Deformation mechanisms and reaction of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics, 257, 149-174. 

  9. Brodie, K.H. and Rutter, E.H., 1985, On the relationship between deformation and metamorphism, with special reference to the behavior of basic rocks. In Metamorphic reactions. Springer, New York, NY, 138-179. 

  10. Bunge, H., 1982, Texture Analysis in Materials Science: Mathematical Models. London: Butterworths. 

  11. Cao, S., Liu, J. and Leiss, B., 2010, Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32, 606-622. 

  12. Cho, M. and Kim, H., 2005, Petrogenesis of the Yugu spinel harzburgite in western Gyeonggi Massif, South Korea. In International Eclogite Conference, 150, 26. 

  13. Dai, L.Q., Zhao, Z.F. and Zheng, Y.F., 2014, Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochemistry, Geophysics, Geosystems, 15, 3762-3779. 

  14. Dhuime, B., Bosch, D., Bodinier, J.L., Garrido, C.J., Bruguier, O., Hussain, S.S. and Dawood, H., 2007, Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth and Planetary Science Letters, 261, 179-200. 

  15. Dilek, Y. and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin, 123, 387-411. 

  16. Fountain, D.M. and Salisbury, M.H., 1981, Exposed crosssections through the continental crust: implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56, 263-277. 

  17. Getsinger, A., Hirth, G., Stunitz, H. and Goergen, E., 2013, Influence of water on rheology and strain localization in the lower continental crust. Geochemistry, Geophysics, Geosystems, 14, 2247-2264. 

  18. Getsinger, A. and Hirth, G., 2014, Amphibole fabric formation during diffusion creep and the rheology of shear zones. Geology, 42, 535-538. 

  19. Hacker, B.R. and Christie, J.M., 1990, Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite. The Brittle-Ductile Transition in Rocks, 56, 127-147. 

  20. Imon, R., Okudaira, T. and Kanagawa, K., 2004, Development of shape-and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. Journal of Structural Geology, 26, 793-805. 

  21. Ishimaru, S., Arai, S., Ishida, Y., Shirasaka, M. and Okrugin, V.M., 2007, Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka. Journal of Petrology, 48, 395-433. 

  22. Ji, S., Salisbury, M.H. and Hanmer, S., 1993, Petrofabric, Pwave anisotropy and seismic reflectivity of high-grade tectonites. Tectonophysics, 222, 195-226. 

  23. Ji, S., Shao, T., Michibayashi, K., Long, C., Wang, Q., Kondo, Y., Zhao, W., Wang, H. and Salisbury, M.H., 2013, A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. Journal of Geophysical Research: Solid Earth, 118, 4699-4728. 

  24. Jung, H., 2017, Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review, Geosciences Journal, 21, 985-1011. 

  25. Kern, H., Popp, T., Gorbatsevich, F., Zharikov, A., Lobanov, K. and Smirnov, Y.P., 2001, Pressure and temperature dependence of Vp and Vs in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics, 338, 113-134. 

  26. Kim, H., Cho, M. and Kim, J., 2003, Evidence for mantle deformation from the Yugu Peridotite: a preliminary study. Geol. Soc. Korea, 23. 

  27. Kim, J. and Jung, H., 2019, New crystal preferred orientation of amphibole experimentally found in simple shear. Geophysical Research Letters, 46. 

  28. Kim, J. and Jung, H., 2020, Lattice preferred orientation (LPO) and seismic anisotropy of amphibole in Gapyeong amphibolites. Korean Journal of Mineralogy and Petrology, 33, 259-272. 

  29. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.C., Rajesh, V.J., Kim, C.B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. 

  30. Ko, B. and Jung, H., 2015, Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature communications, 6. 

  31. Kruse, R. and Stunitz, H., 1999, Deformation mechanisms and phase distribution in mafic high-temperature mylonites from the Jotun Nappe, southern Norway. Tectonophysics, 303, 223-249. 

  32. Leake, B.E., 1978, Nomenclature of amphiboles. American Mineralogist, 63, 1023-1052. 

  33. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34. 

  34. Mainprice, D. and Nicolas, A., 1989, Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11, 175-189. 

  35. Nyman, M.W., Law, R.D. and Smelik, E.A., 1992, Cataclastic deformation mechanism for the development of core-mantle structures in amphibole. Geology, 20, 455-458. 

  36. Oh, C.W., Lee, J.Y., Yengkhom, K.S., Lee, B.C. and Ryu, H.I., 2018, Neoproterozoic igneous activity and PermoTriassic metamorphism in the Gapyeong area within the Gyeonggi Massif, South Korea, and theirimplication for the tectonics of northeastern Asia. Lithos, 322, 1-19. 

  37. Panozzo, R., 1984, Two-dimensional strain from the orientation of lines in a plane. Journal of structural geology, 6, 215-221. 

  38. Park, G., Park, J.W., Heo, C.H. and Kim, J., 2022, Distribution of mantle-melt interaction zone: A petrological exploration tool for podiform chromitite deposits in the Kalaymyo ophiolite, Myanmar. Journal of Geochemical Exploration, 232, 106878. 

  39. Park, M. and Jung, H., 2017, Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709, 55-68. 

  40. Payot, B.D., Arai, S., Tamayo Jr, R.A. and Yumul Jr, G.P., 2009, What underlies the Philippine island arc? clues from the Calaton Hill, Tablas island, Romblon (Central Philippines). Journal of Asian Earth Sciences, 36, 371-389. 

  41. Pearce, M.A., Wheeler, J. and Prior, D.J., 2011, Relative strength of mafic and felsic rocks during amphibolite facies metamorphism and deformation. Journal of Structural Geology, 33, 662-675. 

  42. Polat, A., Fryer, B.J., Samson, I.M., Weisener, C., Appel, P. W., Frei, R. and Windley, B.F., 2012, Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenaesset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean. Precambrian Research, 214, 124-153. 

  43. Powell, W., Zhang, M., O'Reilly, S.Y. and Tiepolo, M., 2004, Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 75, 141-171. 

  44. Prouteau, G., Scaillet, B., Pichavant, M. and Maury, R., 2001, Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, 197-200. 

  45. Ranalli, G. and Murphy, D.C., 1987, Rheological stratification of the lithosphere. Tectonophysics, 132, 281-295. 

  46. Rudnick, R.L., Gao, S., Holland, H.D. and Turekian, K.K., 2003, Composition of the continental crust. The crust, 3, 1-64. 

  47. Santana, L.V., McLeod, C.L., Blakemore, D., Shaulis, B. and Hill, T., 2020, Bolivian hornblendite cumulates: Insights into the depths of Central Andean arc magmatic systems. Lithos, 370, 105618. 

  48. Siegesmund, S., Takeshita, T. and Kern, H., 1989, Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics, 157, 25-38. 

  49. Skemer, P., Katayama, B., Jiang, Z.T. and Karato, S., 2005, The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics, 411, 157-167. 

  50. Smith, D.J., Petterson, M.G., Saunders, A.D., Millar, I.L., Jenkin, G.R.T., Toba, T., Naden, J. and Cook, J.M., 2009, The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 158, 785-801. 

  51. Um, S.H. and Lee, M.S., 1963, Explanatory text of the geological map of tae hung sheet, Geological survey of Korea. 

  52. Van der Pluijm, B.A. and Marshak, S., 2004, Earth structure. New York. 

  53. Woo, Y.K., Choi, S.W. and Park, K.H., 1991, Genesis of talc ore deposits in the Yesan area of Chungnam, Korea. Economic and Environmental Geology, 24, 363-378. 

  54. Wright, S.I., Nowell, M.M. and Field, D.P., 2011, A review of strain analysis using electron backscatter diffraction. Microscopy and microanalysis, 17, 316-329. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로