$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용
Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes 원문보기

공업화학 = Applied chemistry for engineering, v.33 no.5, 2022년, pp.488 - 495  

정서경 (충남대학교 응용화학공학과) ,  하성민 (충남대학교 응용화학공학과) ,  이영석 (충남대학교 응용화학공학과)

초록
AI-Helper 아이콘AI-Helper

온실가스의 회수 및 분리를 위한 다공성 물질로 활성탄소와 탄소분자체가 주목을 받아왔다. 균일한 기공을 가지는 탄소분자체는 특정 가스를 선택적으로 흡착할 수 있기 때문에 가스의 포집 및 분리에 사용되고 있다. 탄소분자체의 성능은 세공의 크기 및 균일성에 따라 좌우되는데, 이러한 탄소분자체의 미세 기공 제어를 위하여 표면을 일정한 두께로 코팅할 수 있는 화학기상증착법이 널리 사용 되고 있다. 이 화학기상증착법은 탄소분자체 제조 시 기공의 크기를 제어하는데 사용될 수 있으나, 그 실험 변수가 다양하기 때문에 이에 대한 최적화가 필요하다. 따라서, 본 총설에서는 가스 흡착 및 분리공정용 활성탄소와 탄소분자체를 제조하기 위하여 여러 가지 활성화 공정, 화학기상증착법과 표면처리 등에 의한 기공 제어 기술들을 중심으로 다루고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size ...

주제어

표/그림 (9)

참고문헌 (47)

  1. E. Gil, S-K. Lee, and M. Rim, The impact of greenhouse gas abatement policy on manufacturing industries in south korea, The Korean Journal of Economic Studies, 69, 55-95 (2021). 

  2. H. Kim, J. Lee, S. Lee, J. Han, and I. Lee, Operating optimization and economic evaluation of multicomponent gas separation process using pressure swing adsorption and membrane process, Korean Chem. Eng. Res., 53, 31-38 (2015). 

  3. C. G. De Salazar, A. Sepulveda-Escribano and F. Rodriguez-Reinoso, Preparation of carbon molecular sieves by pyrolytic carbon deposition, Adsorption, 11, 663-667 (2005). 

  4. Z. Mousavi and H. R. Bozorgzadeh, Preparation of carbon molecular sieves from pistachio shell and walnut shell for kinetic separation of carbon monoxide, hydrogen and methane, Iran. J. Chem. Chem. Eng., 36, 71-80 (2017). 

  5. U. Morali, H. Demiral, and S. Sensoz, Synthesis of carbon molecular sieve for carbon dioxide adsorption: Chemical vapor deposition combined with Taguchi design of experiment method, Powder Technol., 355, 716-726 (2019). 

  6. Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio, and J. E. Fischer, Importance of pore size in high-pressure hydrogen storage by porous carbons, Int. J. Hydrogen Energy, 34, 6314-6319 (2009). 

  7. A. I. Shirley and A. I. LaCava, PSA performance of densely packed adsorbent beds, AIChE Journal, 41, 1389-1394 (1995). 

  8. Y. J. Kim, J. G. Lee, J. Y. Lee, and Y. T. Kang, Experimental study on PSA process for high purity CH4 recovery from biogas, Korean J. Air Cond. Refrig. Eng., 23, 281-286 (2011). 

  9. S-J. Lee, H. Ahn, J-G. Jee, M-B. Kim, J-H. Moon, Y-S. Bae, and C-H. Lee, Comparison of PSA and VSA processes for air separation, Clean Technol., 6, 101-109 (2004). 

  10. S. Cho, Current status and prospects of PSA gas separation technology, Chemical Industry And Technology, 15, 195 (1997). 

  11. M. R. Rahimpour, M. Ghaemi, S. M. Jokar, O. Dehghani, M. Jafari, S. Amiri, and S. Raeissi, The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant, Chem. Eng. J., 226, 444-459 (2013). 

  12. G. Jee, S. J. Lee, H. M. Moon, S. H. Lee, and C. H. Lee, Development of O 2 Purifier by Pressure Swing Adsorption Process, KIGAS, 8, 37-47 (2004). 

  13. J. K. Jeon, Y. K. Park, and K. Chue, Study of PSA process for carbon dioxide recovery over zeolite adsorbent: Effect of rinse rate on process performance, J. Korean Soc. Atmos. Environ., 20, 99-110 (2004). 

  14. A. A. Abd, S. Z. Naji, A. S. Hashim, and M. R. Othman, Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review, J. Environ. Chem. Eng, 8, 104142 (2020). 

  15. A. A. Ahmad, M. Al-Raggad, and N. Shareef, Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: A review, Carbon Lett., 31, 957-971 (2021). 

  16. L. Wang, Y. Yao, Z. Zhang, L. Sun, W. Lu, W. Chen, and H. Chen, Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation, Chem. Eng. J., 251, 348-354 (2014). 

  17. R. C. Bansal, J. B. Donnet, and H. F. Stoeckli, Active Carbon, Marcel Dekker, New York (1988). 

  18. A. Swiatkowski, Industrial carbon adsorbents, Stud. Surf. Sci. Catal., 120, 69-92 (2008). 

  19. W. Thongpat, J. Taweekun, and K. Maliwan, Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH, Carbon Lett., 31, 1079-1088 (2021). 

  20. J. Wang, Y. K. Park, and Y. M. Jo, Sequential improvement of activated carbon fiber properties for enhanced removal efficiency of indoor CO 2 , J. Ind. Eng. Chem., 89, 400-408 (2020). 

  21. A. Syakdani, Y. Bow, Rusdianasari, and M. Taufik, Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process using Pressure Swing Adsorption (PSA) Method. J. Phys.: Conf. Ser., 1167, 012055 (2019). 

  22. T. Orfanoudaki, G. Skodras, I. Dolios, and G. Sakellaropoulos, Production of carbon molecular sieves by plasma treated activated carbon fibers, Fuel, 82, 2045-2049 (2003). 

  23. B. Lee, Preparation and Characterization of Carbon Molecular Sieve for Separating Landfill gases, PhD Dissertation, Paichai University, Daejeon, Korea (2001). 

  24. W. S. Hong, Thin film vacuum process technology via chemical vapor deposition methods, Vacuum Magazine, 1, 9-13 (2014). 

  25. M. B. Tahir, M. Rafique, M. S. Rafique, T. Nawaz, M. Rizwan, and M. Tanveer, Nanotechnology and Photocatalysis for Environmental Applications, M. B. Tahir, M. Rafique, M. S. Rafique (eds.), 119-138, Elsevier, UK (2020). 

  26. H. Demiral and I. Demiral, Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition, Adv. Powder Technol., 29, 3033-3039 (2018). 

  27. P. J. M. Carrott, I. P. P. Cansado, and M. M. L. R. Carrott, Carbon molecular sieves from PET for separations involving CH 4 , CO 2 , O 2 and N 2 , Appl. Surf. Sci., 252, 5948-5952 (2005). 

  28. S. H. Moon and J. W. Shim, Molecular sieve properties for CH 4 /CO 2 of activated carbon fibers prepared by benzene deposition, J. Kor. Soc. Environ. Eng., 27, 614-619 (2005). 

  29. M. J. Kim, K. H. Kim, Y. Kim, B. Yoo, and Y. S. Lee, Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts, Carbon Lett., 30, 675-682 (2020). 

  30. X. Qi, C. Qin, W. Zhong, C. Au, X. Ye, and Y. Du, Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties, Materials, 3, 4142-4174 (2010). 

  31. Y. Xu, X. Chen, D. Wu, Y. Luo, X. Liu, Q. Qian, L. Xiao, and Q. Chen, Carbon molecular sieves from soybean straw-based activated carbon for CO 2 /CH 4 separation, Carbon Lett., 25, 68-77 (2018). 

  32. D. Adinata, W. M. A. W. Daud, and M. K. Aroua, Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation, Fuel Process Technol., 88, 599-605 (2007). 

  33. M. Ahmad, W. W. Daud, and M. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Coll. Surf. A: Physicoche. Eng. Asp., 312, 131-135 (2008). 

  34. J. Zhang, S. Qu, L. Li, P. Wang, X. Li, Y. Che, and X. Li, Preparation of carbon molecular sieves used for CH 4 /N 2 separation, J. Chem. Eng. Data, 23, 1737-1744 (2018). 

  35. S. J. Kang, G. J. Kim, M-S. Kim, B-J. Kim, S. Kim, J-S. Roh, D-H. Riu, S-J. Park, M-K. Seo, Y. Shul, K. H. An, K. S. Yang, S. K. Ryu, G. W. Lee, Y-S. Lee, J-M. Lee, C-H. Lee, S. Lim, Y-S. Lim, D-H. Jeong, K. Y. Cho, D. Cho, S. H. Chi, and I-P. Hong, Application Handbook of Carbon Materials, 1, 613, Daeyeongsa, Seoul, Korea (2008). 

  36. C. Y. Yang, C. L. Kao and P. Y. Hung, Preparation of activated carbon from waste cation exchange resin and its application in wastewater treatment, Carbon Lett., 32, 461-474 (2022). 

  37. S. Kwon, Y. You, H. Lim, J. Lee, T.-S. Chang, Y. Kim, H. Lee, and B.-S. Kim, Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon, J. Ind. Eng. Chem., 83, 289-296 (2020). 

  38. S. E. Moradi, S. Amirmahmoodi, and M. J. Baniamerian, Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve, J. Alloys Compd., 498, 168-171 (2010). 

  39. S-J. Son, J-S. Choi, K-Y. Choo, S-D. Song, S. Vijayalakshmi, and T-H. Kim, Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell, Korean J. Chem. Eng., 22, 291-297 (2005). 

  40. M. Hemmat, A. Rahbar-Kelishami, and M. H. Vakili, Preparation of carbon molecular sieves and its impregnation with Co and Ni for CO 2 /N 2 separation, Int. J. Environ. Sci. Technol., 15, 2213-2228 (2018). 

  41. Z. Y. Yang, D. C. Wang, Z. Y. Meng, and Y. Y. Li, Adsorption separation of CH 4 /N 2 on modified coal-based carbon molecular sieve, Sep. Purif. Technol., 218, 130-137 (2019). 

  42. S. Cho, H. R. Yu, K. D. Kim, K. B. Yi, and Y. S. Lee, Surface characteristics and carbon dioxide capture characteristics of oxyfluorinated carbon molecular sieves, Chem. Eng. J., 211, 89-96 (2012). 

  43. Y. Kawabuchi, S. Kawano, and I. Mochida, Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene, Carbon, 34, 711-717 (1996). 

  44. T. Horikawa, J. i. Hayashi, and K. Muroyama, Preparation of molecular sieving carbon from waste resin by chemical vapor deposition, Carbon, 40, 709-714 (2002). 

  45. P. Carrott, I. Cansado, and M. R. Carrott, Carbon molecular sieves from PET for separations involving CH 4 , CO 2 , O 2 and N 2 , Appl. Surf. Sci., 252, 5948-5952 (2006). 

  46. M. Mohammadi, G. N. Ghasem, and A. R. Mohamed, Production of carbon molecular sieves from palm shell through carbon deposition from methane, Chem. Ind. Chem. Eng. Q, 17, 525-533 (2011). 

  47. D. A. Bell, B. F. Towler, and M. Fan, Coal Gasification and Its Applications, 1st ed., William Andrew, Elsevier, UK (2011). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로