$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가
Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.55 no.10, 2022년, pp.761 - 774  

이가림 (금오공과대학교 토목공학과) ,  이송희 (금오공과대학교 토목공학과) ,  김보미 (금오공과대학교 토목공학과) ,  우동국 (계명대학교 토목공학전공) ,  노성진 (금오공과대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

가뭄과 홍수의 예측, 기후변화가 유역 유출량, 더 나아가 수질 및 생태계에 미치는 영향의 정확한 분석을 위해서는 수문 모의 과정의 불확실성을 정량화하고 최소화하기 위한 노력이 필요하다. 수문자료동화는 수문모형의 상태량이나 매개변수를 갱신(update)하여 모의 초기 조건의 가장 가능성 있는 추정치를 생성하는 기법으로, 실시간 관측 정보를 이용하여 예측 정확도를 향상시킬 수 있는 방법이다. 본 연구에서는 airGRdatassim 모형을 이용하여 앙상블 기반 순차 자료동화 기법인 앙상블 칼만 필터와 파티클 필터로 용담댐 유역에 대해 일 유출을 모의하고, 자료동화 기법별 특성을 비교 및 분석하였다. 모의 결과, Kling-Gupta efficiency (KGE) 지표가 자료동화 적용 전 0.799에서 앙상블 칼만 필터와 파티클 필터 적용시 각각 0.826, 0.933으로 향상되었다. 또한 기상 강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 수 등 수문자료동화의 설정과 관련된 하이퍼-매개변수(hyper-parameter)의 불확실성이 모의 예측 성능에 미치는 영향을 분석하였다. 강수 및 잠재 증발산 강제력의 오차 범위에 대한 민감도 분석 결과, 모든 모의 범위에서 파티클 필터가 앙상블 칼만 필터보다 예측 성능이 우수하였다. 파티클 필터는 기상 강제력 오차 크기가 작을수록 모의 성능이 향상되었으며, 앙상블 칼만 필터는 상대적으로 오차가 큰 경우 최적 성능이 확인되었다. 한편, 자료동화시 갱신되는 상태량의 종류를 줄일수록 자료동화에 의한 모의 성능은 감소하였다. 본 연구의 모의 실험 결과는 앙상블 자료동화를 이용하여 일 유출 모의 정확도 향상이 가능하지만, 최적 성능을 발휘하기 위해서는 수문자료동화 기법별 하이퍼-매개변수의 적정한 조정이 필요함을 함의한다.

Abstract AI-Helper 아이콘AI-Helper

Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data ass...

Keyword

표/그림 (12)

참고문헌 (31)

  1. Adeyeri, O.E., Laux, P., Arnault, J., Lawin, A.E., and Kunstmann, H. (2020). "Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa." Journal of Hydrology: Regional Studies, Vol. 27, 100655. 

  2. Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T. (2002). "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking." IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp. 174-188. 

  3. Bloschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J.W., McDonnell, J.J., Savenije, H.H.G., Sivapalan, M. et al. (2019). "Twenty-three unsolved problems in hydrology (UPH) - a community perspective." Hydrological Sciences Journal, Vol. 64, No. 10, pp. 1141-1158. 

  4. Boucher, M.-A., Quilty, J., and Adamowski, J. (2020). "Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons." Water Resources Research, Vol. 56, No. 6, e2019WR026226. 

  5. Choi, J.-H., and Kim, S.-D. (2021). "Estimating time-varying parameters for monthly water balance model using particle filter: assimilation of stream flow data." Journal of Korea Water Resources Association, Vol. 54, No. 6, pp. 365-379. 

  6. Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, J., and Uddstrom, M.J. (2008). "Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model." Advances in Water Resources, Vol. 31, No. 10, pp. 1309-1324. 

  7. Doucet, A., Godsill, S., and Andrieu, C. (2000). "On sequential Monte Carlo sampling methods for Bayesian filtering." Statistics and Computing, Vol. 10, No. 3, pp. 197-208. 

  8. Evensen, G. (1994). "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics." Journal of Geophysical Research: Oceans, Vol. 99, No. C5, pp. 10143-10162. 

  9. Evensen, G. (2003). "The Ensemble Kalman Filter: theoretical formulation and practical implementation." Ocean Dynamics, Vol. 53, No. 4, pp. 343-367. 

  10. Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91. 

  11. Hendricks Franssen, H.J., and Kinzelbach, W. (2008). "Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem." Water Resources Research, Vol. 44, No. 9, W09408. doi: 10.1029/2007WR006505. 

  12. Kim, Y.S., Lee, G.H., Lee, D.E., and Noh, S.J. (2015). "Parameter estimation and uncertainty assessment of a soil erosion model using data assimilation method." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 373-382. 

  13. Knoben, W.J.M., Freer, J.E., and Woods, R.A. (2019). "Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores." Hydrology and Earth System Sciences, Vol. 23, No. 10, pp. 4323-4331. 

  14. Lavenne, A., Thirel, G., Andreassian, V., Perrin, C., and Ramos, M.-H. (2016). "Spatial variability of the parameters of a semidistributed hydrological model." Proceedings of the International Association of Hydrological Sciences, Vol. 373, pp. 87-94. 

  15. Leach, J.M., and Coulibaly, P. (2019). "An extension of data assimilation into the short-term hydrologic forecast for improved prediction reliability." Advances in Water Resources, Vol. 134, 103443. 

  16. Lee, B.J., and Bae, D.-H. (2011). "Development of real-time river flow forecasting model with data assimilation technique." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 199-208. 

  17. Lee, B.J., Jung, I.-W., Jeong, H.-S., and Bae, D.-H. (2013). "Development of realtime dam's hydrologic variables prediction model using observed data assimilation and reservoir operation techniques." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 755-765. 

  18. Lee, D.U., Kim, Y.S., Yu, W.S., and Lee, G.H. (2017). "Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 241-252. 

  19. Liu, Y., Weerts, A.H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A.I.J.M., van Velzen, N., He, M., Lee, H., Noh, S.J., Rakovec, O., and Restrepo, P. (2012). "Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities." Hydrology and Earth System Sciences, Vol. 16, No. 10, pp. 3863-3887. 

  20. Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: Une voie d'amelioration des performances et du realisme des modeles pluie-debit?. Ph. D. Dissertation, Universite Pierre et Marie Curie Paris VI, Paris, France, pp. 149-152. 

  21. Noh, S.J. (2013). Sequential Monte Carlo methods for probabilistic forecasts and uncertainty assessment in hydrologic modeling, Ph. D. Dissertation, Kyoto University, Kyoto, Japan. 

  22. Noh, S.J., Rakovec, O., Weerts, A.H., and Tachikawa, Y. (2014). "On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models." Journal of Hydrology, Vol. 519, pp. 2707-2721. 

  23. Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011a). "Dual state-parameter updating scheme on a conceptual hydrologic model using sequential Monte Carlo Filters." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 67, No. 4, p. I_1-I_6. 

  24. Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011b). "Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization." Hydrology and Earth System Sciences, Vol. 15, No. 10, pp. 3237-3251. 

  25. Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2012). "Ensemble Kalman Filtering and particle filtering in a lag-time window for short-term streamflow forecasting with a distributed hydrologic model." Journal of Hydrologic Engineering, Vol. 18, No. 12, pp. 1684-1696. 

  26. Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C. (2005). "Which potential evapotranspiration input for a lumped rainfall - runoff model?: Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall - runoff modelling." Journal of Hydrology, Vol. 303, No. 1, pp. 290-306. 

  27. Oudin, L., Moulin, L., Bendjoudi, H., and Ribstein, P. (2010). "Estimating potential evapotranspiration without continuous daily data: possible errors and impact on water balance simulations." Hydrological Sciences Journal, Vol. 55, No. 2, pp. 209-222. 

  28. Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O. (2021). "Sequential data assimilation for streamflow forecasting: Assessing the sensitivity to uncertainties and updated variables of a conceptual hydrological model at basin scale." Water Resources Research, Vol. 57, No. 4, e2020WR028390. doi: 10.1029/2020WR028390 

  29. Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: Particle filters for tracking applications. Artech House, Boston, MA, U.S. and London, UK. 

  30. Shen, H., Seo, D.-J., Lee, H., Liu, Y., and Noh, S. (2022). "Improving flood forecasting using conditional bias-aware assimilation of streamflow observations and dynamic assessment of flow-dependent information content." Journal of Hydrology, Vol. 605, 127247. 

  31. Yoo, C., Hwang, J.-H., and Kim, J. (2012). "Use of the extended Kalman Filter for the real-time quality improvement of runoff data: 1. Algorithm construction and application to one station." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 697-711. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로