최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of Korea Water Resources Association = 한국수자원학회논문집, v.55 no.10, 2022년, pp.761 - 774
이가림 (금오공과대학교 토목공학과) , 이송희 (금오공과대학교 토목공학과) , 김보미 (금오공과대학교 토목공학과) , 우동국 (계명대학교 토목공학전공) , 노성진 (금오공과대학교 토목공학과)
Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data ass...
Adeyeri, O.E., Laux, P., Arnault, J., Lawin, A.E., and Kunstmann, H. (2020). "Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa." Journal of Hydrology: Regional Studies, Vol. 27, 100655.
Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T. (2002). "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking." IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp. 174-188.
Bloschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J.W., McDonnell, J.J., Savenije, H.H.G., Sivapalan, M. et al. (2019). "Twenty-three unsolved problems in hydrology (UPH) - a community perspective." Hydrological Sciences Journal, Vol. 64, No. 10, pp. 1141-1158.
Boucher, M.-A., Quilty, J., and Adamowski, J. (2020). "Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons." Water Resources Research, Vol. 56, No. 6, e2019WR026226.
Choi, J.-H., and Kim, S.-D. (2021). "Estimating time-varying parameters for monthly water balance model using particle filter: assimilation of stream flow data." Journal of Korea Water Resources Association, Vol. 54, No. 6, pp. 365-379.
Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, J., and Uddstrom, M.J. (2008). "Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model." Advances in Water Resources, Vol. 31, No. 10, pp. 1309-1324.
Doucet, A., Godsill, S., and Andrieu, C. (2000). "On sequential Monte Carlo sampling methods for Bayesian filtering." Statistics and Computing, Vol. 10, No. 3, pp. 197-208.
Evensen, G. (1994). "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics." Journal of Geophysical Research: Oceans, Vol. 99, No. C5, pp. 10143-10162.
Evensen, G. (2003). "The Ensemble Kalman Filter: theoretical formulation and practical implementation." Ocean Dynamics, Vol. 53, No. 4, pp. 343-367.
Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91.
Hendricks Franssen, H.J., and Kinzelbach, W. (2008). "Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem." Water Resources Research, Vol. 44, No. 9, W09408. doi: 10.1029/2007WR006505.
Kim, Y.S., Lee, G.H., Lee, D.E., and Noh, S.J. (2015). "Parameter estimation and uncertainty assessment of a soil erosion model using data assimilation method." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 373-382.
Knoben, W.J.M., Freer, J.E., and Woods, R.A. (2019). "Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores." Hydrology and Earth System Sciences, Vol. 23, No. 10, pp. 4323-4331.
Lavenne, A., Thirel, G., Andreassian, V., Perrin, C., and Ramos, M.-H. (2016). "Spatial variability of the parameters of a semidistributed hydrological model." Proceedings of the International Association of Hydrological Sciences, Vol. 373, pp. 87-94.
Leach, J.M., and Coulibaly, P. (2019). "An extension of data assimilation into the short-term hydrologic forecast for improved prediction reliability." Advances in Water Resources, Vol. 134, 103443.
Lee, B.J., and Bae, D.-H. (2011). "Development of real-time river flow forecasting model with data assimilation technique." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 199-208.
Lee, B.J., Jung, I.-W., Jeong, H.-S., and Bae, D.-H. (2013). "Development of realtime dam's hydrologic variables prediction model using observed data assimilation and reservoir operation techniques." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 755-765.
Lee, D.U., Kim, Y.S., Yu, W.S., and Lee, G.H. (2017). "Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 241-252.
Liu, Y., Weerts, A.H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A.I.J.M., van Velzen, N., He, M., Lee, H., Noh, S.J., Rakovec, O., and Restrepo, P. (2012). "Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities." Hydrology and Earth System Sciences, Vol. 16, No. 10, pp. 3863-3887.
Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: Une voie d'amelioration des performances et du realisme des modeles pluie-debit?. Ph. D. Dissertation, Universite Pierre et Marie Curie Paris VI, Paris, France, pp. 149-152.
Noh, S.J. (2013). Sequential Monte Carlo methods for probabilistic forecasts and uncertainty assessment in hydrologic modeling, Ph. D. Dissertation, Kyoto University, Kyoto, Japan.
Noh, S.J., Rakovec, O., Weerts, A.H., and Tachikawa, Y. (2014). "On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models." Journal of Hydrology, Vol. 519, pp. 2707-2721.
Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011a). "Dual state-parameter updating scheme on a conceptual hydrologic model using sequential Monte Carlo Filters." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 67, No. 4, p. I_1-I_6.
Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011b). "Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization." Hydrology and Earth System Sciences, Vol. 15, No. 10, pp. 3237-3251.
Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2012). "Ensemble Kalman Filtering and particle filtering in a lag-time window for short-term streamflow forecasting with a distributed hydrologic model." Journal of Hydrologic Engineering, Vol. 18, No. 12, pp. 1684-1696.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C. (2005). "Which potential evapotranspiration input for a lumped rainfall - runoff model?: Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall - runoff modelling." Journal of Hydrology, Vol. 303, No. 1, pp. 290-306.
Oudin, L., Moulin, L., Bendjoudi, H., and Ribstein, P. (2010). "Estimating potential evapotranspiration without continuous daily data: possible errors and impact on water balance simulations." Hydrological Sciences Journal, Vol. 55, No. 2, pp. 209-222.
Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O. (2021). "Sequential data assimilation for streamflow forecasting: Assessing the sensitivity to uncertainties and updated variables of a conceptual hydrological model at basin scale." Water Resources Research, Vol. 57, No. 4, e2020WR028390. doi: 10.1029/2020WR028390
Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: Particle filters for tracking applications. Artech House, Boston, MA, U.S. and London, UK.
Shen, H., Seo, D.-J., Lee, H., Liu, Y., and Noh, S. (2022). "Improving flood forecasting using conditional bias-aware assimilation of streamflow observations and dynamic assessment of flow-dependent information content." Journal of Hydrology, Vol. 605, 127247.
Yoo, C., Hwang, J.-H., and Kim, J. (2012). "Use of the extended Kalman Filter for the real-time quality improvement of runoff data: 1. Algorithm construction and application to one station." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 697-711.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.