$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

친환경 가소제의 시장과 동향
A Trend and Market in Eco-friendly Plasticizers: Review and Prospective 원문보기

Composites research = 복합재료, v.35 no.4, 2022년, pp.232 - 241  

오은영 (Department of Mechanical Engineering, Sungkyunkwan University) ,  김백환 (Department of Polymer Science & Engineering, Sungkyunkwan University) ,  서종환 (Department of Mechanical Engineering, Sungkyunkwan University)

초록
AI-Helper 아이콘AI-Helper

가소제는 가공성 및 연성과 같은 기계적 특성에 바람직한 영향을 미치기 위해 중합체에 첨가되는 화학 첨가제이다. 본 논문에서는 플라스틱 시장에서 전통적으로 사용되어온 프탈레이트 기반 가소제를 대체할 수 있는 친환경 가소제의 사용과 시장에 대해 탐구한다. 바이오 가소제는 주로 농산물, 부산물 및 폐기물을 포함하는 바이오 매스 소스에서 파생된다. 바이오 매스 공급원과 관계없이 이상적인 친환경 가소제는 무독성이며, 휘발·추출·이행 현상에 대한 저항성이 높고, 상용성과 혼화성이 좋으며, 경제적이어야 한다. 글로벌 바이오 가소제 시장은 2020년 13억 달러에서 2030년까지 21억 달러에 이를 것으로 전망되며, 2021년에서 2030년까지 5.31% CAGR로 성장할 것으로 예상된다.

Abstract AI-Helper 아이콘AI-Helper

Plasticizers are chemical additives added to polymers to have a desirable effect on mechanical properties such as processability and ductility. In this paper, we explore the use and market of eco-friendly plasticizers that can replace phthalate-based plasticizers that have been traditionally used in...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 논문에서는 환경호르몬의 유해성 논란이 되고 있는 기존 프탈레이트계 가소제의 단점을 밝히고 이를 대체할 수 있는 친환경 바이오 기반 가소제의 다양한 바이오매스소스에 대해 소개하고자 한다. 나아가 잠재적인 바이오 매스 소스에 대해 고찰하고자 한다.
  • 본 논문에서는 전통적인 프탈레이트계 가소제의 사용에 대한 논란에 대해 언급하고, 대안으로써 친환경 가소제의 잠재력을 분석하였다. 이 과정에서 고분자에서 가소제의 작용을 관장하는 일반 이론 역시 다루었다.
  • 본 논문에서는 환경호르몬의 유해성 논란이 되고 있는 기존 프탈레이트계 가소제의 단점을 밝히고 이를 대체할 수 있는 친환경 바이오 기반 가소제의 다양한 바이오매스소스에 대해 소개하고자 한다. 나아가 잠재적인 바이오 매스 소스에 대해 고찰하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (90)

  1. Sears, J.K., and Darby, J.R., "Mechanism of Plasticizer Action," The Technology of Plasticizers, pp.35-77, 1982. 

  2. Lee, J.M., "Development Trends and Eco-friendly Plasticizer Regulation", The Korean Society of Industrial and Engineering Chemistry, Vol. 2015, No. 1, pp.122-122, 2015. 

  3. Allied Market Research 2022, [online] Available at: https://www.alliedmarketresearch.com/bio-plasticizers-market 

  4. Market Research 2021, [online] Available at: https://www.marketresearch.com/DataM-Intelligence-4Market-Research-LLPv4207/Global-Bio-Plasticizer-14535206/ 

  5. Wolf, R., and Kaul, B.L., Plastics, Additves, Ullmann's Encycl. Ind. Chem. Germany, 2012. 

  6. Yesid, O., Encyclopedia of Polymers and Composites, Nova Science Publishers, USA, 2014. 

  7. Grand View Research 2017, [online] Available at: https://www.grandviewresearch.com/press-release/global-bio-plasticizers-market 

  8. Godwin, A.D., Applied Plastics Engineering Handbook, Elsevier Inc., USA, 2011. 

  9. Wei, X.F., Kallio, K.J., Bruder, S., Bellander, M., and Hedenqvist, M.S., "Plasticizer Loss in a Complex System (Polyamide 12): Kinetics, Prediction and Its Effects on Mechanical Properties", Polymer Degradation and Stability, Vol. 169, p.108985, 2019. 

  10. Muobom, S.S., Umar, A.M.S., Soongseok, Y., and Brolin, A.P., "A Review on Plasticizers and Eco-friendly Bioplasticizers: Biomass Sources and Market", International Journal of Engineering Research, Vol. 9, No. 05, pp.1138-1144, 2020. 

  11. Kim, J., Synthesis and Processing Properties of Palm Oil and Biomass-based Bioplasticizers, Ph.D Thesis, Chungnam Nathional University, Korea, 2021. 

  12. Varughese, S., and Tripathy, D.K., "Effect of Plasticizer Type and Concentration on the Dynamic Mechanical Properties of Epoxidized Natural Rubber Vulcanizates", Journal of Elastomers & Plastics, Vol. 25, No. 4, pp.343-357, 1993. 

  13. Snejdrova, E., and Dittrich, M., "Pharmaceutical Applications of Plasticized Polymers", Recent Advances in Plasticizers, Vol. 159, pp.23-34, 2012. 

  14. Mekonnen, T., Mussone, P., Khalil, H., and Bressler, D., "Progress in Bio-based Plastics and Plasticizing Modifications", Journal of Materials Chemistry A, Vol. 1, No. 43, pp.13379-13398, 2013. 

  15. Godwin, A.D., Plasticizer Selection for Specific Applications, Basic Chem., InterMed. Technol., USA, 1933. 

  16. Marcilla, A., and Beltran, M., "Mechanisms of Plasticizers Action" Handbook of Plasticizers, pp.107-120, 2004. 

  17. Bocque, M., Voirin, C., Lapinte, V., Caillol, S., and Robin, J.J., "Petro-based and Bio-based Plasticizers: Chemical Structures to Plasticizing Properties", Journal of Polymer Science Part A: Polymer Chemistry, Vol. 54, No. 1, pp.11-33, 2016. 

  18. Wei, X.F., Linde, E., and Hedenqvist, M.S., "Plasticiser Loss from Plastic or Rubber Products Through Diffusion and Evaporation", NPJ Materials Degradation, Vol. 3, No. 1, pp.1-8, 2019. 

  19. Ayamba, A.A., Ali, M., Carboo, D., and Awuku, F.J., "Extraction and Determination of Phthalates Content in Polyethylene Food Contact Materials on the Ghanaian Market", Journal of Natural Sciences Research, Vol. 8, pp.1-6, 2018. 

  20. Royaux, A., Fabre-Francke, I., Balcar, N., Barabant, G., Bollard, C., Lavedrine, B., and Cantin, S., "Aging of Plasticized Polyvinyl Chloride in Heritage Collections: The Impact of Conditioning and Cleaning Treatments", Polymer Degradation and Stability, Vol. 137, pp.109-121, 2017. 

  21. Nagorka, R., Birmili, W., Schulze, J., and Koschorreck, J., "Diverging Trends of Plasticizers (phthalates and non-phthalates) in Indoor and Freshwater Environments-why?", Environmental Sciences Europe, Vol. 34, No. 1, pp.1-15, 2022. 

  22. Burgos-Aceves, M.A., Abo-Al-Ela, H.G., and Faggio, C., "Impact of Phthalates and Bisphenols Plasticizers on Haemocyte Immune Function of Aquatic Invertebrates: A Review on Physiological, Biochemical, and Genomic Aspects", Journal of Hazardous Materials, Vol. 419, p.126426, 2021. 

  23. Bi, C., Maestre, J.P., Li, H., Zhang, G., Givehchi, R., Mahdavi, A., Kinney, K.A., Siegel, J., Horner, S.D., and Xu, Y., "Phthalates and Organophosphates in Settled Dust and HVAC Filter Dust of US low-income Homes: Association with Season, Building Characteristics, and Childhood Asthma", Environment International, Vol. 121, pp.916-930, 2018. 

  24. Bope, A., Haines, S.R., Hegarty, B., Weschler, C.J., Peccia, J., and Dannemiller, K.C., "Degradation of Phthalate Esters in Floor Dust at Elevated Relative Humidity", Environmental Science: Processes & Impacts, Vol. 21, No. 8, pp.1268-1279, 2019. 

  25. Wormuth, M., Scheringer, M., Vollenweider, M., and Hungerbuhler, K., "What are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans?", Risk Analysis, Vol. 26, No. 3, pp.803-824, 2006. 

  26. Heudorf, U., Mersch-Sundermann, V., and Angerer, J., "Phthalates: Toxicology and Exposure", International Journal of Hygiene and Environmental Health, Vol. 210, No. 5, pp.623-634, 2007. 

  27. Pant, N., Shukla, M., Patel, D.K., Shukla, Y., Mathur, N., Gupta, Y.K., and Saxena, D.K., "Correlation of Phthalate Exposures with Semen Quality", Toxicology and Applied Pharmacology, Vol. 231, No. 1, pp.112-116, 2008. 

  28. Saeki, Y., and Emura, T., "Technical Progresses for PVC Production", Progress in Polymer Science, Vol. 27, No. 10, pp.2055- 2131, 2002. 

  29. Abb, M., Heinrich, T., Sorkau, E., and Lorenz, W., "Phthalates in House Dust", Environment International, Vol. 35, No. 6, pp.965-970, 2009. 

  30. Lott, S., Phthalate-free Plasticizers in PVC, Healthy Building Network, USA, 2001. 

  31. McCormick, K., and Kautto, N., "The Bioeconomy in Europe: An Overview", Sustainability, Vol. 5, No. 6, pp.2589-2608, 2013. 

  32. Msanne, J., Kim, H., and Cahoon, E.B., "Biotechnology Tools and Applications for Development of Oilseed Crops with Healthy Vegetable Oils", Biochimie, Vol. 178, pp.4-14, 2020. 

  33. Wai, P.T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., and Leng, Y., "Catalytic Developments in the Epoxidation of Vegetable Oils and the Analysis Methods of Epoxidized Products", RSC advances, Vol. 9, No. 65, pp.38119-38136, 2019. 

  34. Meier, M.A., Metzger, J.O., and Schubert, U.S., "Plant Oil Renewable Resources as Green Alternatives in Polymer Science", Chemical Society Reviews, Vol. 36, No. 11, pp.1788-1802, 2007. 

  35. Giannakas, A., Patsaoura, A., Barkoula, N.M., and Ladavos, A., "A Novel Solution Blending Method for Using Olive Oil and Corn Oil as Plasticizers in Chitosan Based Organoclay Nanocomposites", Carbohydrate Polymers, Vol. 157, pp.550-557, 2017. 

  36. Jia, P.Y., Bo, C.Y., Zhang, L.Q., Hu, L.H., Zhang, M., and Zhou, Y.H., "Synthesis of Castor Oil Based Plasticizers Containing Flame Retarded Group and Their Application in Poly (vinyl chloride) as Secondary Plasticizer", Journal of Industrial and Engineering Chemistry, Vol. 28, pp.217-224, 2015. 

  37. Zhang, H., Zhu, F., Fu, Q., Zhang, X., and Zhu, X., "Mechanical Properties of Renewable Plasticizer Based on Ricinoleic Acid for PVC", Polymer Testing, Vol. 76, pp.199-206, 2019. 

  38. Chu, H., and Ma, J., "A Strategy to Prepare Internally Plasticized PVC Using a Castor Oil Based Derivative" Korean Journal of Chemical Engineering, Vol. 35, No. 11, pp.2296-2302, 2018. 

  39. Gama, N.V., Santos, R., Godinho, B., Silva, R., and Ferreira, A., "Methyl Acetyl Ricinoleate as Polyvinyl Chloride Plasticizer", Journal of Polymers and the Environment, Vol. 27, No. 4, pp.703-709, 2019. 

  40. Ma, Y., Song, F., Kong, Q., Li, Q., Jia, P., and Zhou, Y., "Preparation and Performance of Bio-based Polyol Ester from Onepot Synthesis of Castor Oil as Nontoxic Poly (vinyl chloride) Plasticizer", Journal of Polymers and the Environment, Vol. 28, No. 8, pp.2101-2107, 2020. 

  41. Brostow, W., Lu, X., and Osmanson, A.T., "Nontoxic Bio-plasticizers for PVC as Replacements for Conventional Toxic Plasticizers", Polymer Testing, Vol. 69, pp.63-70, 2018. 

  42. Chen, J., Li, X., Wang, Y., Huang, J., Li, K., Nie, X., and Jiang, J., "Synthesis and Application of Environmental Soybean Oil-based Epoxidized Glycidyl Ester Plasticizer for Poly (vinyl chloride)", European Journal of Lipid Science and Technology, Vol. 119, No. 5, p.1600216, 2017. 

  43. Jia, P., Zhang, M., Hu, L., and Zhou, Y., "Green Plasticizers Derived from Soybean Oil for Poly (vinyl chloride) as a Renewable Resource Material", Korean Journal of Chemical Engineering, Vol. 33, No. 3, pp.1080-1087, 2016. 

  44. Yang, D., Peng, X., Zhong, L., Cao, X., Chen, W., Zhang, X., Liu, S., and Sun, R., "Green Films from Renewable Resources: Properties of Epoxidized Soybean Oil Plasticized Ethyl Cellulose Films", Carbohydrate Polymers, Vol. 103, pp.198-206, 2014. 

  45. Wang, M., Song, X., Jiang, J., Xia, J., Ding, H., and Li, M., "Plasticization and Thermal Behavior of Hydroxyl And Nitrogen Rich Group-containing Tung-oil-based Ester Plasticizers for PVC", New Journal of Chemistry, Vol. 42, No. 4, pp.2422-2431, 2018. 

  46. Jia, P., Ma, Y., Xia, H., Zheng, M., Feng, G., Hu, L., Zhang, M., and Zhou, Y., "Clean Synthesis of Epoxidized Tung Oil Derivatives via Phase Transfer Catalyst and Thiol-ene Reaction: A Detailed Study", ACS Sustainable Chemistry & Engineering, Vol. 6, No. 11, pp.13983-13994, 2018. 

  47. Chen, J., Wang, Y., Huang, J., Li, K., and Nie, X., "Synthesis of Tung-oil-based Triglycidyl Ester Plasticizer and Its Effects on Poly (vinyl chloride) Soft Films", ACS Sustainable Chemistry & Engineering, Vol. 6, No. 1, pp.642-651, 2018. 

  48. Volpe, V., De Feo, G., De Marco, I., and Pantani, R., "Use of Sunflower Seed Fried Oil as an Ecofriendly Plasticizer for Starch and Application of this Thermoplastic Starch as a Filler for PLA", Industrial Crops and Products, Vol. 122, pp.545-552, 2018. 

  49. Chieng, B.W., Ibrahim, N.A., Then, Y.Y., and Loo, Y.Y., "Epoxidized Jatropha oil as a Sustainable Plasticizer to Poly (lactic acid)", Polymers, Vol. 9, No. 12, p.204, 2017. 

  50. Carbonell-Verdu, A., Garcia-Sanoguera, D., Jorda-Vilaplana, A., Sanchez-Nacher, L., and Balart, R., "A New Biobased Plasticizer for Poly (vinyl chloride) Based on Epoxidized Cottonseed Oil", Journal of Applied Polymer Science, Vol. 133, No. 27, 2016. 

  51. Chen, J., Li, X., Wang, Y., Huang, J., Li, K., Nie, X., and Jiang, J., "Epoxidized Dimeric Acid Methyl Ester Derived from Rubber Seed Oil and Its Application as Secondary Plasticizer", Journal of Applied Polymer Science, Vol. 133, No. 34, 2016. 

  52. Kamarudin, S.H., Jusoh, E.R., Abdullah, L.C., Ismail, M.H.S., Aung, M.M., and Ratnam, C.T., "Thermal and Dynamics Mechanical Analysis of Polypropylene Blown Films with Crude Palm Oil as Plasticizer", Indonesian Journal of Chemistry, Vol. 19, No. 3, pp.545-555, 2019. 

  53. Rauter, A.P., Lindhorst, T., and Queneau, Y., Chemistry for Biologists: Carbohydrates, Chemical, Biology, RCS Publishing, USA, 2019. 

  54. Adhikari, B., Chaudhary, D.S., and Clerfeuille, E., "Effect of Plasticizers on the Moisture Migration behavior of Low-amylose Starch Films during Drying", Drying Technology, Vol. 28, No. 4, pp.468-480, 2010. 

  55. Yang, Z., Peng, H., Wang, W., and Liu, T., "Crystallization Behavior of Poly(ε-caprolactone)/layered Double Hydroxide Nanocomposites", Journal of Applied Polymer Science, Vol. 116, pp.2658-2667, 2010. 

  56. Kaspar, H.R.E., and Pizzi, A., "Industrial Plasticizing/dispersion Aids for Cement Based on Polyflavonoid Tannins", Journal of Applied Polymer Science, Vol. 59, No. 7, pp.1181-1190, 1996. 

  57. Azwar, E., Yin, B., and Hakkarainen, M., "Liquefied Biomass Derived Plasticizer for Polylactide", Journal of Chemical Technology & Biotechnology, Vol. 88, No. 5, pp.897-903, 2013. 

  58. Mikus, P.Y., Alix, S., Soulestin, J., Lacrampe, M.F., Krawczak, P., Coqueret, X., and Dole, P., "Deformation Mechanisms of Plasticized Starch Materials", Carbohydrate Polymers, Vol. 114, pp.450-457, 2014. 

  59. Fakhouri, F.M., Martelli, S.M., Bertan, L.C., Yamashita, F., Mei, L.H.I., and Queiroz, F.P.C., "Edible Films Made from Blends of Manioc Starch and Gelatin-influence of Different Types of Plasticizer and Different Levels of Macromolecules on Their Properties", LWT, Vol. 49, No. 1, pp.149-154, 2012. 

  60. Bertuzzi, M.A., Vidaurre, E.C., Armada, M., and Gottifredi, J.C., "Water Vapor Permeability of Edible Starch Based Films", Journal of Food Engineering, Vol. 80, No. 3, pp.972-978, 2007. 

  61. Park, J.W., Whiteside, W.S., and Cho, S.Y., "Mechanical and Water Vapor Barrier Properties of Extruded and Heat-pressed Gelatin Films", LWT-Food Science and Technology, Vol. 41, No. 4, pp.692-700, 2008. 

  62. Banker, G.S., "Film Coating Theory and Practice", Journal of Pharmaceutical Sciences, Vol. 55, No. 1, pp.81-89, 1996. 

  63. McHugh, T.H., and Krochta, J.M., "Sorbitol-vs Glycerol-plasticized whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation", Journal of Agricultural and Food Chemistry, Vol. 42, No. 4, pp.841-845, 1994. 

  64. Nashed, G., Rutgers, R.P., and Sopade, P.A., "The Plasticisation Effect of Glycerol and Water on the Gelatinisation of Wheat Starch", Starch-Starke, Vol. 55, No. 3-4, pp.131-137, 2003. 

  65. Bourtoom, T., "Plasticizer Effect on the Properties of Biodegradable Blend Film from Rice Starch-chitosan", Songklanakarin Journal of Science & Technology, Vol. 30, 2008. 

  66. Liu, H., Adhikari, R., Guo, Q., and Adhikari, B., "Preparation and Characterization of Glycerol Plasticized (high-amylose) Starch-chitosan Films", Journal of Food Engineering, Vol. 116, No. 2, pp.588-597, 2013. 

  67. Hosokawa, J., Nishiyama, M., Yoshihara, K., and Kubo, T., "Biodegradable Film Derived from Chitosan and Homogenized Cellulose", Industrial & Engineering Chemistry Research, Vol. 29, No. 5, pp.800-805, 1990. 

  68. Belous, A., Tchoudakov, R., Tzur, A., Narkis, M., and Alperstein, D., "Development and Characterization of Plasticized Polyamides by Fluid and Solid Plasticizers", Polymers for Advanced Technologies, Vol. 23, No. 6, pp.938-945, 2012. 

  69. Alperstein, D., Knani, D., Goichman, A., and Narkis, M., "Determination of Plasticizers Efficiency for Nylon by Molecular Modeling", Polymer Bulletin, Vol. 68, No. 7, pp.1977-1988, 2012. 

  70. Plasman, V., Caulier, T., and Boulos, N., "Polyglycerol Esters Demonstrate Superior Antifogging Properties for Films", Plastics, Additives and Compounding, Vol. 7, No. 2, pp.30-33, 2005. 

  71. Greco, A., Brunetti, D., Renna, G., Mele, G., and Maffezzoli, A., "Plasticizer for Poly (vinyl chloride) from Cardanol as a Renewable Resource Material", Polymer Degradation and Stability, Vol. 95, No. 11, pp.2169-2174, 2010. 

  72. Murthy, B.G.K., Samban, M.S., and Aggarwal, J.S., "Identification of Some Naturally Occurring Alkylsubstituted Phenols in Cashew-nut Shell Liquid by Chromatographic Techniques", Journal of Chromatography A, Vol. 32, pp.519-528, 1968. 

  73. Menon, A.R.R., Pillai, C.K.S., and Nando, G.B., "Modification of Natural Rubber with Phosphatic Plasticizers: A Comparison of Phosphorylated Cashew Nut Shell Liquid Prepolymer with 2-ethyl Hexyl Diphenyl Phosphate", European Polymer Journal, Vol. 34, No. 7, pp.923-929, 1998. 

  74. Menon, A.R.R., and Visconte, L.L.Y., "Studies on Blends of Polychloroprene and Polybutadiene Rubber Containing Phosphorylated Cardanol Prepolymer: Melt Rheology, Cure Characteristics, and Mechanical Properties", Journal of Applied Polymer Science, Vol. 102, No. 4, pp.3195-3200, 2006. 

  75. Menon, A.R., "Melt Rheology of Ethylene Propylene Diene Rubber Modified with Phosphorylated Cashew Nut Shell Liquid Prepolymer," Iranian Polymer Journal, Vol. 12, No. 4, pp.305-313, 2003. 

  76. Menon, A.R., and Pillai, C.S., "Processability Characteristics and Thermal Stability of Blends of LDPE and EVA Copolymer Modified with Phosphorylated Cashew Nut Shell Liquid Prepolymer", Iranian Polymer Journal, Vol. 11, No. 2, pp.85-91, 2002. 

  77. Wang, H., and Zhou, Q., "Synthesis of Cardanol-based Polyols via Thiol-ene/thiol-epoxy Dual Click-reactions and Thermosetting Polyurethanes Therefrom", ACS Sustainable Chemistry & Engineering, Vol. 6, No. 9, pp.12088-12095, 2018. 

  78. Culea, R.E., Tamba-Berehoiu, R.M., and Popa, N.C., "Sensory properties of Some White Wines, Flavored Wines and Vermouth Type Wines, prepared by Using Own Recipes", Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, Vol. 15, No. 1, pp.147-151, 2015. 

  79. Johnson Jr, W., "Final Report on the Safety Assessment of Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate", International Journal of Toxicology, Vol. 21, pp.1-17, 2002. 

  80. Wilkes, C.E., Summers, J.W., Daniels, C.A., and Berard, M.T., 2005. PVC Handbook (Vol. 184). Munich: Hanser, 2005. 

  81. Pritchard, G., 2005. Plastics Additives: a Rapra Market Report. iSmithers Rapra Publishing, 2005. 

  82. Ghiya, V.P., Dave, V., Gross, R.A., and Mccarthy, S.P., "Biode-gradability of Cellulose Acetate Plasticized with Citrate Esters", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 33, No. 5, pp.627-638, 1996. 

  83. Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A., and McCarthy, S.P., "Citrate Esters as Plasticizers for Poly (lactic acid)", Journal of Applied Polymer Science, Vol. 66, No. 8, pp.1507-1513, 1997. 

  84. Ljungberg, N., Andersson, T., and Wesslen, B., "Film Extrusion and Film Weldability of Poly (lactic acid) Plasticized with Triacetine and Tributyl Citrate", Journal of Applied Polymer Science, Vol. 88, No. 14, pp.3239-3247, 2003. 

  85. Hiltunen, E., Selin, J.F., and Skog, M., US Patent 6117928 A, 2000. 

  86. Khodaverdi, E., Tekie, F.S.M., Amoli, S.S., and Sadeghi, F., "Comparison of Plasticizer Effect on Thermo-responsive Properties of Eudragit RS Films", AAPS Pharmscitech, Vol. 13, No. 3, pp.1024-1030, 2012. 

  87. Jamarani, R., Erythropel, H.C., Nicell, J.A., Leask, R.L., and Maric, M., "How Green is your Plasticizer?", Polymers, Vol. 10, No. 8, p.834, 2018. 

  88. Nguyen, T., Kim, Y.J., Park, S.K., Lee, K.Y., Park, J.W., Cho, J.K., and Shin, S., "Furan-2, 5-and Furan-2, 3-dicarboxylate Esters Derived from Marine Biomass as Plasticizers for Poly (vinyl chloride)", ACS Omega, Vol. 5, No. 1, pp.197-206, 2019. 

  89. Jia, P., Ma, Y., Feng, G., Hu, L., and Zhou, Y., "High-value Utilization of Forest Resources: Dehydroabietic Acid as a Chemical Platform for Producing Non-toxic and Environmentfriendly Polymer Materials", Journal of Cleaner Production, Vol. 227, pp.662-674, 2019. 

  90. Hu, Y., Yuan, L., Zhang, X., Zhou, H., Wang, P., Li, G., Wang, A., Cong, Y., Zhang, T., Liang, X. Li, W., and Li, N., "Production of 1, 2-cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates", ACS Sustainable Chemistry & Engineering, Vol. 7, No. 3, pp.2980-2988, 2019. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로