$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암반 그라우팅을 위한 점성유체의 시간의존 특성 분석
Time-dependent characteristics of viscous fluid for rock grouting 원문보기

Journal of Korean Tunnelling and Underground Space Association = 한국터널지하공간학회논문집, v.24 no.6, 2022년, pp.465 - 481  

이종원 (부산대학교 사회환경시스템공학과) ,  김지영 (부산대학교 사회환경시스템공학과) ,  원조현 (부산대학교 사회환경시스템공학과) ,  오태민 (부산대학교 사회환경시스템공학과)

초록
AI-Helper 아이콘AI-Helper

터널과 같은 지하 공간을 활용하는 경우, 암반 그라우팅 공법을 통하여 암반의 차수 및 강도특성을 향상시켜 지하공간을 안전하게 활용하는 것이 중요하다. 암반 절리그라우팅을 위한 주입재는 주로 Bingham 유체에 해당하는 시멘트계열의 재료를 활용하는 것이 일반적이다. Bingham 유체 모델은 점성도와 항복강도의 특성으로 표현되며, 이러한 특성은 시간 경과에 따라 달라지게 된다. 만약 시멘트 주입재료의 시간 경과에 따른 특성을 고려하지 않고 그라우팅 주입설계를 실시하는 경우, 그라우팅 과정에서 주입재의 점성도 및 항복강도의 증가에 따라 주입성능이 저하될 수 있다. 본 연구에서는 그라우팅 주입재료의 물-시멘트 배합비율, 시간 경과에 따른 점성특성(점성도, 항복강도) 측정 및 분석 실내실험을 실시하였다. 실내실험을 통하여 파악한 점성모델을 이용하여 그라우팅 주입재의 시간의존 특성에 따른 그라우팅 주입 시뮬레이션을 실시하였다. 해석결과, 시간의존 특성을 고려하는 경우 단일 점성특성을 적용한 해석에 비하여 그라우팅 주입거리 및 누적 주입량이 감소하여 주입성능이 큰 폭으로 감소하는 결과를 보였다. 본 연구를 통하여 파악된 그라우팅 주입재의 시간 경과에 따른 점성모델 및 해석결과는 향후 그라우팅 주입 현장에서 의미있게 활용될 수 있을 것으로 예상된다.

Abstract AI-Helper 아이콘AI-Helper

Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express ...

주제어

표/그림 (13)

참고문헌 (25)

  1. Barton, N. (1978), "Suggested methods for the quantitative description of discontinuities in rock masses", International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 15, No. 6, pp. 319-368. 

  2. Hakansson, U., Hassler, L., Stille, H. (1992), "Rheological properties of microfine cement grouts", Tunnelling and Underground Space Technology, Vol. 7, No. 4, pp. 453-458. 

  3. Jeoung, J.H., Hwang, S.P., Lee, J.H., Lee, T.H. (2016), "The study on evaluation of injection performance in micro crack depending on viscosity of grouting material", Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 5, pp. 239-245. 

  4. Kim, J., Lee, E.K. (2022), "A fundamental study on the criteria of basic parameters for planning rock grouting", Journal of the Korean Geotechnical Society, Vol. 38, No. 2, pp. 15-27. 

  5. Kim, N.Y., Park, G.T., Baek, S.C., Lee, K.H., Choi, J.W., Her, Y. (2017), "Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 1, pp. 71-82. 

  6. Kobayashi, S., Stille, H. (2007), Design for rock grouting based on analysis of grout penetration, Verification using Aspo HRL data and parameter analysis, No. SKB-R--07-13, Swedish Nuclear Fuel and Waste Management Co., pp. 23-34. 

  7. Lee, H., Oh, T.M., Park, E.S., Lee, J.W., Kim, H.M. (2017), "Factors affecting waterproof efficiency of grouting in single rock fracture", Geomechanics and Engineering, Vol. 12, No. 5, pp. 771-783. 

  8. Lee, J.W., Weon, J.H., Choi, H.Y., Oh, T.M. (2021), "Analysis of viscosity and bleeding characteristics of grouting materials according to the proportion of bentonite", LHI Journal of Land, Housing, and Urban Affairs, Vol. 12, No. 4, pp. 127-137. 

  9. Liu, X., Hu, C., Liu, Q., He, J. (2021), "Grout penetration process simulation and grouting parameters analysis in fractured rock mass using numerical manifold method", Engineering Analysis with Boundary Elements, Vol. 123, pp. 93-106. 

  10. Liu, Y.H., Yang, P., Ku, T., Gao, S.W. (2020), "Effect of different nanoparticles on the grouting performance of cement-based grouts in dynamic water condition", Construction and Building Materials, Vol. 248, No. 118663, pp. 1-9. 

  11. Meng, F., Wong, L.N.Y., Zhou, H., Yu, J., Cheng, G. (2019), "Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints", Rock Mechanics and Rock Engineering, Vol. 52, No. 7, pp. 2155-2174. 

  12. Ministry of Land, Infrastructure and Transport (2020), Yearbook of road bridge and tunnel statistics, pp. 13-16. 

  13. Mohammed, M.H., Pusch, R., Knutsson, S. (2015), "Study of cement-grout penetration into fractures under static and oscillatory conditions", Tunnelling and Underground Space Technology, Vol. 45, pp. 10-19. 

  14. Moon, J.S. (2013), "Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 333-344. 

  15. Mu, W., Wang, D., Li, L., Yang, T., Feng, Q., Wang, S., Xiao, F. (2021), "Cement flow in interaction rock fractures and its corresponding new construction process in slope engineering", Construction and Building Materials, Vol. 303, No. 11. 

  16. Nguyen, V.H., Remond, S., Gallias, J.L. (2011), "Influence of cement grouts composition on the rheological behaviour", Cement and Concrete Research, Vol. 41, No. 3, pp. 292-300. 

  17. Pantazopoulos, I.A., Markou, I.N., Christodoulou, D.N., Droudakis, A.I., Atmatzidis, D.K., Antiohos, S.K., Chaniotakis, E. (2012), "Development of microfine cement grouts by pulverizing ordinary cements", Cement and Concrete Composites, Vol. 34, No. 5, pp. 593-603. 

  18. Panthi, K.K., Nilsen, B. (2005), "Significance of grouting for controlling leakage in water tunnels: A case from Nepal", Proceedings of the ITA-AITES 2005 World Tunnelling Congress and 31st ITA General Assembly, Istanbul, Turkey, pp. 931-937. 

  19. Rafi, J.Y., Stille, H. (2014), "Control of rock jacking considering spread of grout and grouting pressure", Tunnelling and Underground Space Technology, Vol. 40, pp. 1-15. 

  20. Saeidi, O., Ramezanzadeh, A., Sereshki, F., Jalali, S.M.E. (2013), "Numerical modeling of the effects of joint hydraulic aperture, orientation and spacing on rock grouting using UDEC: A case study of Bakhtiary dam of Iran", Journal of Mining and Environment, Vol. 4, No. 1, pp. 15-26. 

  21. Sagong, M., Lee, J.S., Park, J., Cho, C. (2018), "An experimental study on the viscosity features of sealant (bentonite-cement slurry) in umbrella arch method", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 5, pp. 773-786. 

  22. Stille, B., Gustafson, G. (2010), "A review of the Namntall tunnel project with regard to grouting performance", Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 346-356. 

  23. Struble, L.J., Lei, W.G. (1995), "Rheological changes associated with setting of cement paste", Advanced Cement Based Materials, Vol. 2, No. 6, pp. 224-230. 

  24. You, K.H., Jie, H.K., Seo, K.W., Kim, S.J., You, D.W. (2012), "A study on the correlation between the rock mass permeability before and after grouting & injection volume and the parameters of Q system in a jointed rock mass tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 6, pp. 617-635. 

  25. Zareidarmiyan, A., Salarirad, H., Vilarrasa, V., Kim, K.I., Lee, J., Min, K.B. (2020), "Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 12, No. 4, pp. 850-865. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로