최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기전자통신동향분석 = Electronics and telecommunications trends, v.37 no.2, 2022년, pp.42 - 52
한영탁 (광통신부품연구실) , 이동훈 (광통신부품연구실) , 김덕준 (광통신부품연구실) , 신장욱 (광통신부품연구실) , 이서영 (광통신부품연구실) , 윤석준 (광통신부품연구실) , 백용순 (광무선원천연구본부)
Intra- and inter- datacenter data traffic is rapidly increasing due to the spread of smart devices, cloud computing, and non-face-to-face services. Recently, 400-Gbps optical transceivers based on 100-Gbps/channel have been released primarily by major overseas companies. Various solutions for next-g...
Cisco, "Cisco global cloud index: Forecast and methodology, 2016-2021," White Paper, 2017.
IEEE-SA Standards Board, "IEEE 802.3bs," 2017, http://www.ieee802.org/3/bs/
800G Pluggable MSA White Paper, "Enabling the next generation of cloud & AI using 800 Gb/s optical module," Mar. 2020.
100G Lambda MSA, http://100glambda.com/
Ethernet Alliance, "2020 ethernet roadmap," https://ethernetalliance.org/technology/2020-roadmap/
800G Pluggable MSA, https://www.800gmsa.com/
IEEE-SA Standards Board, "IEEE 802.3 beyond 400 Gb/s ethernet study," 2021, https://www.ieee802.org/3/B400G/public/21_08/
Yole, "Optical transceivers for datacom & telecom," 2020.
LightCounting, "Mega data center optics report," 2021.
T. Nakajima et al., "106-Gb/s PAM4 operation of directly modulated DFB lasers from 25 to 70℃ for transmission over 2-km SMF in the CWDM range," in Proc. Opt. Fiber Commun. Conf. Exhibition (OFC), (San Francisco, CA, USA), June 2021.
D . Che e t al., "Direct modulation o f a 54-GHz distributed bragg reflector laser with 100-GBaud PAM4 and 80-GBaud PAM-8," in Proc. Opt. Fiber Commun. Conf. (OFC), (San Diego, CA, USA), Mar. 2020, pp. 1-3.
Y. Matsui et al., "Low-chirp isolator-free 65-GHzbandwidth directly modulated lasers," Nat. Photonics, vol. 15, 2021, pp. 59-63.
S. Yamaoka et al., "Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate," Nat. Photonics, vol. 15, no. 1, 2021, pp. 28-35.
M. Chacinski et al., "Monolithically integrated 100 GHz DFB-TWEAM," J. Light. Technol., vol. 27, no. 16, 2009, pp. 3410-3415.
S. Yamauchi et al., "224-Gb/s PAM4 uncooled operation of lumped-electrode EA-DFB lasers with 2-km transmission for 800GbE application," in Proc. Opt. Fiber Commun. Conf. (OFC), (San Diego, CA, USA), June 2021.
T. Shindo et al., "High power and high speed SOA assisted extended reach EADFB laser (AXEL) for 53-Gbaud PAM4 fiber-amplifier-less 60-km optical link," J. Light. Technol., vol. 38, no. 11, 2020, pp. 2984-2991.
Q. Cheng et al., "Recent advances in optical technologies for data centers: A review," Optica, vol. 5, no. 11, 2018.
M. Makiuchi et al., "Easly manufactured high-speed back-illuminated GaInAs/InP p-i-n photodiode," IEEE Photon. Technol. Lett., vol. 3, no. 6, 1991.
Y. Lee et al., "High-performance PIN photodiodes with an integrated aspheric microlens," in Proc. OptoElectron. Commun. Conf., (Hong Kong, China), July 2009.
김덕준 외, "InP 렌즈가 후면에 집적된 표면입사 InGaAs 광다이오드 칩의 제작 및 특성평가," 제28회 광자기술학회 2019, (평창, 대한민국), 2019. 12, p. ThC4.
N. Shimizu et al., "InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz," IEEE Photon. Technol. Lett., vol. 10, no. 3, 1998.
T. Okimoto et al., "Photodiodes integrated with various functions for 100 GBaud coherent detection," IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 2, 2022.
S. Routray et al., "The new frontiers of 800G high speed optical communications," in Proc. Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA), (Coimbatore, India), Nov. 2020.
F. Horst et al., "Cascaded mach-zehnder wave-length filters in silicon photonics for low loss and flat passband WDM multiplexing," Opt. Express, vol. 21, no. 10, 2013, pp. 11652-11658.
M. Takahashi et al., "ZrO 2 -SiO 2 based low loss ultrahigh Δ PLC," in Proc. OECC/PS, (Kyoto, Japan), June 2013.
C. Minkenberg et al., "Co-packaged datacenter optics: Opportunities and challenges," IET Optoelectron., vol. 15, no. 2, 2021.
https://www.broadcom.com/info/optics/cpo
http://www.copackagedoptics.com/
https://www.vuassistance.com/will-co-packagedoptics-cpo-replace-pluggable-optical-module/
S. Fathololoumi et al., "1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration," J. Lightw. Technol., vol. 39, no. 4, 2021.
K. Kurata et al., "Silicon photonic micro-transceivers for beyond 5G environments," Appl. Sci., vol. 11, no. 22, 2021.
Intel, "Intel 400G DR4 QSFP-DD optical transceiver," https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/400g-dr4-qsfp-ddoptical-transceiver.html
II-VI, "400G-LR8 QSFP-DD optical transceiver," https://ii-vi.com/product/400gbase-lr8-qsfp-ddoptical-transceiver/
QSFP-DD800 MSA, http://www.qsfp-dd800.com/
S.-J. Yun et al., "Hybrid-integrated 400G TROSA module and its performance evaluation using PAM4 DSP chip," in Proc. Opt. Fiber Commun. Conf. (OFC), (Washington, DC, USA), June 2021.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.