$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

낙동강권역의 지하수 산출 유망도 평가
A Groundwater Potential Map for the Nakdonggang River Basin 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.28 no.6, 2023년, pp.71 - 89  

유순영 (한국지질자원연구원) ,  정재훈 (한국지질자원연구원) ,  박길택 (한국지질자원연구원) ,  문희선 (한국지질자원연구원) ,  석희준 (한국지질자원연구원) ,  김용철 (한국지질자원연구원) ,  고동찬 (한국지질자원연구원) ,  고경석 (한국지질자원연구원) ,  김형찬 (한국지질자원연구원) ,  문상호 (한국지질자원연구원) ,  신제현 (한국지질자원연구원) ,  심병완 (한국지질자원연구원) ,  최한나 (한국지질자원연구원) ,  하규철 (한국지질자원연구원)

Abstract AI-Helper 아이콘AI-Helper

A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To...

주제어

표/그림 (15)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 물이용취약지역에서 지하수 개발 최적지를 선정하고, 관정 개발의 실패 확률을 낮추기 위해서는 정확한 GPM이 요구된다. GPM의 정확도에 영향을 미치는 요인들을 살펴보고, 정확한 GPM 구축을 위해 필요한 연구 과제를 논의해 보았다.
  • 이 논문은 한국지질자원연구원이 2023년 발간한 낙동강권역 지하수 정보 지도집에 수록된 낙동강권역의 GPM 산출과정을 소개하고, 향후 물이용취약지역에서 지하수를 이용하여 물 수요를 충당하는데 있어 GPM을 활용하기 위해 필요한 연구 과제를 제시하고자 하였다.

가설 설정

  • 각 산출 유망 등급에 해당하는 암반 관정의 비양수량 중앙값을 살펴보면(Fig. 6a), 산출 유망도가 가장 높은 것으로 예상된 VH 그룹의 중앙값이 가장 크다. 그러나 H 그룹의 중앙값은 M, L, VL 그룹의 중앙값보다 작은 것을 알 수 있다.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Abesser, C. and Lewis, M., 2015, A semi-quantitative technique?for mapping potential aquifer productivity on the national scale:?example of England and Wales (UK), Hydrogeol. J., 23(8),?1677-1694.? 

  2. Adiat, K.A.N., Nawawi, M.N.M., and Abdullah, K., 2012,?Assessing the accuracy of GIS-Based elementary multi criteria?decision analysis as a spatial prediction tool-a case of predicting?potential zones of sustainable groundwater resources, J. Hydrol.,?440-441, 75-89.? 

  3. Agarwal, E., Agarwal, R., Garg, R.D., and Garg, P.K., 2013,?Delineation of groundwater potential zone: An AHP/ANP?approach, J. Earth Syst. Sci., 122, 887-898.? 

  4. Agarwal, R. and Garg, P.K., 2016, Remote sensing and GIS?based groundwater potential & recharge zones mapping using?multi-criteria decision making technique, Water Resour. Manag.,?30, 243-260.? 

  5. Arulbalaji, P., Padmalal, D., and Sreelash, K., 2019, GIS and?AHP techniques based delineation of groundwater potential?zones: a case study from Southern Western Ghats, India, Sci.?Rep., 9, 2082.? 

  6. Bae, S., Park, S., and Kim, S.J., 2015, The enhancement strategy on national cyber capability using hybrid methodology of?AHP and TOPSIS, Converg. Secur. J., 15(4), 43-55.? 

  7. Celik, R., 2019, Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool:?Case study in the tigris river batman-hasankeyf sub-basin, Turkey, Water, 11(12), 2630.? 

  8. Chaudhry, A.K., Kumar, K., and Alam, M.A., 2021, Mapping of?groundwater potential zones using the fuzzy analytic hierarchy?process and geospatial technique, Geocarto Int., 36(20), 2323-2344.? 

  9. Chung, E.-S., Won, K.J., Kim, Y.J., and Lee, H.S., 2014, Water?resources vulnerability characteristics by district's population?size in a changing climate using subjective and objective weights,?Sustainability, 6(9), 6141-6157.? 

  10. Das, S., 2019, Comparison among influencing factor, frequency?ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India,?Groundw. Sustain. Dev., 8, 617-629.? 

  11. Diaz-Alcaide, S. and Martinez-Santos, P., 2019, Review: Advances?in groundwater potential mapping, Hydrogeol. J., 27, 2307-2324.? 

  12. Geological Survey Ireland, 2023, Aquifer classification. Available online: https://www.gsi.ie/ (Accessed at December 15, 2023)? 

  13. Gomez-Escalonilla, V., Martinez-Santos, P., and Martin-Loeches,?M., 2022, Preprocessing approaches in machine-learning-based?groundwater potential mapping: an application to the Koulikoro?and Bamako regions, Mali, Hydrol. Earth Syst. Sci., 26(2), 221-243.? 

  14. Hasanuzzaman, M., Mandal, M.H., Hasnine, M., and Shit, P.K.,?2022, Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India, Appl. Water Sci., 12, 58.? 

  15. Hwang, C.L. and Yoon, K., 1981, Multiple Attributes Decision?Making Methods and Applications. Springer, Heidelberg, Germany.? 

  16. Jenifer, M.A. and Jha, M.K., 2017, Comparison of analytic hierarchy process, catastrophe and entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems, J.?Hydrol., 548, 605-624.? 

  17. KIGAM (Korea Institute of Geoscience and Mineral Resources),?2019. 1:1,000,000 Digital geological map. Available online:?https://data.kigam.re.kr/ (Accessed at December 15, 2023)? 

  18. KIGAM, 2021, Groundwater information map: the Geumgang?River Basin. ISSN: 979-11-90505-22-2, 65p? 

  19. KIGAM, 2023, Groundwater information map of the Nakdonggang River Basin. ISSN: 979-11-90505-59-8, 76p? 

  20. KIGAM, 2022, Annual report of the basic research project of?Korea Institute of Geoscience and Mineral resources: Development of Climate Change Adaptation Technologies for Securing?and Utilizing Large-Scale Groundwater Resources, 238p? 

  21. Kim, Y.J. and Chung, E.-S., 2013, Assessing climate change vulnerability with group multi-criteria decision making approaches,?Clim. Change, 121, 301-315.? 

  22. KMA (Korea Meteorological Administration), 2022, Automated Synoptic Observing System (ASOS) annual rainfall data.?Available online: https://data.kma.go.kr (Accessed at December?15, 2023).? 

  23. KMOE (Ministry of Environment), 2019, Land cover map.?Available online: https://egis.me.go.kr (Accessed at December?15, 2023).? 

  24. KOSTAT, 2019, Administrative divisions. Available online:?http://data.nsdi.go.kr/ (Accessed at December 15, 2023).? 

  25. Kumar, T., Gautam, A.K., and Kumar, T., 2014, Appraising the?accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones, Water?Resour. Manag., 28, 4449-4466.? 

  26. K-water, 2010. River order map. Available online: http://www.wamis.go.kr (Accessed at December 15, 2023)? 

  27. K-water, 2019, Depth to groundwater. Available online: http://data.nsdi.go.kr/ (Accessed at December 15, 2023)? 

  28. Lee, J.-Y., Raza, M., and Park, Y.-C., 2018, Current status and management for the sustainable groundwater resources in?Korea, Episodes, 41(3), 179-191.? 

  29. Lee, S., Kim, Y.-S., and Oh, H.-J., 2012, Application of a?weights-of-evidence method and GIS to regional groundwater?productivity potential mapping, J. Environ. Manag., 96(1), 91-105.? 

  30. Lee, S. and Lee, C.-W., 2015, Application of decision-tree?model to groundwater productivity-potential mapping, Sustainability, 7(10), 13416-13432.? 

  31. Lee, S., Hyun, Y., and Lee, M.-J., 2019, Groundwater potential?mapping using data mining models of big data analysis in Goyang-si, South Korea, Sustainability, 11(6), 1678.? 

  32. Naghibi, S.A., Hashemi, H., Berndtsson, R., and Lee, S., 2020,?Application of extreme gradient boosting and parallel random?forest algorithms for assessing groundwater spring potential?using DEM-derived factors, J. Hydrol., 589, 125197.? 

  33. NIAS (National Institute of Agricultural Sciences), 1979, Drainage class map. Available online: http://soil.rda.go.kr (Accessed?at December 15, 2023)? 

  34. NGII (National Geogrpahic Information Institute), 2021, Digital?topographic map. Available online: http://data.nsdi.go.kr/ (Accessed at December 15, 2023)? 

  35. Patidar, N., Mohseni, U., Pathan, A. I., and Agnihotri, P.G., 2022. Groundwater potential zone mapping using an integrated?approach of GIS-Based AHP-TOPSIS in Ujjain District, Madhya Pradesh, India. Water Conserv. Sci. En., 7, 267-282.? 

  36. Prasad, P., Loveson, V.J., Kotha, M., and Yadav, R., 2020,?Application of machine learning techniques in groundwater?potential mapping along the west coast of India, GISci. Remote?Sens., 57, 735-752.? 

  37. Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi,?H.R., and Zeinivand, H., 2015, Groundwater potential mapping?at Kurdistan region of Iran using analytic hierarchy process and?GIS, Arab. J. Geosci., 8, 7059-7071.? 

  38. Rasool, U., Yin, X., Xu, Z., Rasool, M. A. Senapathi, V., Hussain, M., Siddique, J., and Trabucco, J.C., 2022, Mapping of?groundwater productivity potential with machine learning algorithms: A case study in the provincial capital of Baluchistan,?Pakistan, Chemosphere, 303(Part 3), 135265.? 

  39. Ravenscroft, P. and Lytton, L., 2022, Seeing the Invisible: A?Strategic Report on Groundwater Quality, World Bank, Washington, D.C. 

  40. Razandi, Y., Pourghasemi, H.R., Neisani, N.S., and Rahmati, O.,?2015, Application of analytical hierarchy process, frequency?ratio, and certainty factor models for groundwater potential?mapping using GIS, Earth Sci. Inform., 8, 867-883.? 

  41. Panahi, M.R., Mousavi, S.M., and Rahimzadegan, M., 2017,?Delineation of groundwater potential zones using remote sensing, GIS, and AHP technique in Tehran-Karaj plain, Iran, Environ. Earth Sci., 76, 792.? 

  42. Saaty, R.W., 1980, The Analytic Hierarchy Process, Planning,?Priority Setting, Resource Allocation. McGraw-Hill, New York.? 

  43. Shabani, M., Masoumi, Z., and Rezaei, A., 2022, Assessment of?groundwater potential using multi-criteria decision analysis and?geoelectrical surveying, Geo-spat. Inf. Sci., 25(4), 600-618.? 

  44. Taylor, R., Scanlon, B., Doll, P. et al., 2013, Ground water and?climate change, Nature Clim. Change, 3, 322-329.? 

  45. Tolche, A.D.D., 2021, Groundwater potential mapping using?geospatial techniques: A case study of dhungeta-ramis sub-basin, Ethiopia, Geol. Ecol. Landsc., 5(1), 65-80.? 

  46. Trabelsi, F., Lee, S., Khlifi, S., and Arfaoui, A., 2019, Frequency ratio model for mapping groundwater potential zones?using gis and remote sensing; Medjerda watershed Tunisia. In:?Chamine, H., Barbieri, M., Kisi, O., Chen, M., Merkel, B. (eds)?Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, CAJG 2018.?Advances in Science, Technology & Innovation, Springer, Cham.? 

  47. Won, K.J, Chung, E.-S, Kim, Y.J., and Hong, I.P., 2014, Assessment of water resources vulnerability index by nation, J. Korea?Water Resour. Assoc., 47(2), 183-194.? 

  48. Yin, H., Shi, Y., Niu, H., Xie, D., Wei, J., Lefticariu, L., and Xu,?S., 2018, A GIS-based model of potential groundwater yield?zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China, J. Hydrol., 557, 434-447.? 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로