[국내논문]강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발 Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data원문보기
현재 극한기상의 발생빈도가 많아지면서 극한기상현상이 발생하였을 때 피해규모는 증가하고 있다. 이게 과거부터 강우량의 예측을 위해 많은 시간과 제원을 투자하여 예측정보를 제공하고 있다. 하지만 이러한 정보는 전문가가 아닌 일반인이 이해하기 어려우며 특히 극한기상현상이 발생하였을 때 어느정도의 규모의 피해가 발생하는지에 대한 정보는 포함되어 있지 않다. 이에 본 연구에서는 영국에서 최초로 제시한 Risk Matrix 작성을 통해 영향예보 기준을 활용하여 호우피해 등급기준 Risk Matrix를 제시하였다. 먼저 강우량 자료와 피해자료와의 상관 분석을 통해 Risk Matrix 작성에 필요한 변수를 선정하고 선행연구에서 제시된 PERCENTILE (25%, 75%, 90%, 95%)과 JNBC(Jenks Natural Breaks Classification)기법을 이용하여 강우량과 피해에 따른 등급기준을 산정하여 두 개의 등급기준을 합성하여 하나의 기준을 제시하였다. 분석 결과에 이재민 세대수 결과의 경우 가장 많은 피해가 발생하였던 영산강, 섬진강유역에서 JNBC 보다 PERCENTILE이 가장 많은 분포를 보였으며, 충청도 지역에서는 유사한 결과를 나타내었다. 강우량의 등급화 결과를 살펴보면 PERCENTILE보다 JNBC의 등급이 높게 산정되었으며, 특히 전라도 지역과 충청도 지역에서 가장 큰 등급을 나타내었다. 또한 피해지역 호우특보 현황과 비교해 보면 JNBC가 유사한 것을 확인할 수 있다. Risk Matrix 결과에서 가장 피해가 심했던 세종, 대전, 충남, 충북, 광주, 전남, 전북지역을 살펴보면 PERCENTILE보다 JNBC가 잘 모사한 것을 확인하였다.
현재 극한기상의 발생빈도가 많아지면서 극한기상현상이 발생하였을 때 피해규모는 증가하고 있다. 이게 과거부터 강우량의 예측을 위해 많은 시간과 제원을 투자하여 예측정보를 제공하고 있다. 하지만 이러한 정보는 전문가가 아닌 일반인이 이해하기 어려우며 특히 극한기상현상이 발생하였을 때 어느정도의 규모의 피해가 발생하는지에 대한 정보는 포함되어 있지 않다. 이에 본 연구에서는 영국에서 최초로 제시한 Risk Matrix 작성을 통해 영향예보 기준을 활용하여 호우피해 등급기준 Risk Matrix를 제시하였다. 먼저 강우량 자료와 피해자료와의 상관 분석을 통해 Risk Matrix 작성에 필요한 변수를 선정하고 선행연구에서 제시된 PERCENTILE (25%, 75%, 90%, 95%)과 JNBC(Jenks Natural Breaks Classification)기법을 이용하여 강우량과 피해에 따른 등급기준을 산정하여 두 개의 등급기준을 합성하여 하나의 기준을 제시하였다. 분석 결과에 이재민 세대수 결과의 경우 가장 많은 피해가 발생하였던 영산강, 섬진강유역에서 JNBC 보다 PERCENTILE이 가장 많은 분포를 보였으며, 충청도 지역에서는 유사한 결과를 나타내었다. 강우량의 등급화 결과를 살펴보면 PERCENTILE보다 JNBC의 등급이 높게 산정되었으며, 특히 전라도 지역과 충청도 지역에서 가장 큰 등급을 나타내었다. 또한 피해지역 호우특보 현황과 비교해 보면 JNBC가 유사한 것을 확인할 수 있다. Risk Matrix 결과에서 가장 피해가 심했던 세종, 대전, 충남, 충북, 광주, 전남, 전북지역을 살펴보면 PERCENTILE보다 JNBC가 잘 모사한 것을 확인하였다.
Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-ex...
Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.
Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.
Jung, S.K., Kang, D.H., Lee, S.W., and Kim, B.S. (2020). "A study on?the development of a heavy rainfall risk impact evaluation matrix."?Korean Society of Hazard Mitigation, Vol. 20, No. 5, pp. 14-20.
Kim, S.W. (2007). Basic statistic. Hakjisa, pp. 96-97.
Korea Meteorological Administration (KMA) (2017). The 3rd meteorological business development basic plan (2017~2021). pp.?42-84.
Korea Meteorological Administration (KMA) (2021). Development?of disaster impact model in heat wave field. p. 258.
Korean Meteorological Society (KMS) (2016). Planning research?on the introduction of impact forecasting. pp. 21-32.
Lee, D.H., and Kim, G.Y. (2019). Meteorological disaster impact?forecast, Korea Institute of Science and Technology Evaluation?and Planning, pp. 5-10.
Lee, S.H., Kang, D.H., and Kim, B.S. (2018). "A study on the method?of calculating the threshold rainfall for rainfall impact?forecasting." Korean Society of Hazard Mitigation, Vol. 18,?No. 7, pp. 93-102.
Lee, Y.M., Ko, C.M., Ji, Y.G., and Choi, B.C. (2020). "Performance?improvement of hydrological quantitative rainfall prediction?(HQPF) simulation for heavy rain impact forecasting." Papers?Presented at the Conference of the Korean Society of Environmental Sciences, pp. 51-51.
Ministry of the Interior and Safety (MOIS) (2022). Public administration and safety statistical yearbook. pp. 52-58.
National Disaster Management Research Institute (NDMI) (2021).?Improvement and application of urban flood risk standard?estimation model. pp. 50-92.
Park, M.S., Cha, J.S., and Yoon, S.G. (2018). "Analysis of electrical?energy consumption according to seasonal temperature for?campus buildings using correlation coefficient and sensitivity?analysis." Proceedings of the 2018 Korean Electrical Society?Summer Conference, KIEE, pp. 123-124.
World Meteorological Organization (WMO). (2015). Guidelines on?multi-hazard impact-based forecast and warning services.?Geneva, Switzerland.
이 논문을 인용한 문헌
활용도 분석정보
상세보기
다운로드
내보내기
활용도 Top5 논문
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다. 더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.