$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향
Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening 원문보기

Korean chemical engineering research = 화학공학, v.61 no.1, 2023년, pp.1 - 7  

여병철 (부경대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

가스 분리 기술은 혼합 가스로부터 신재생에너지 자원 및 환경 오염 물질과 관련된 수소(H2) 및 이산화탄소(CO2)와 같은 주요 가스를 효과적으로 추출할 수 있기 때문에 매우 유용하다. 에너지 소비를 줄이기 위한 가스 분리 기술로서 분리막 공정과 흡착 공정이 널리 사용되고 있는데, 두 공정 모두 분리막과 흡착제의 역할을 하는 다공성 물질이 필요하다. 특히 다공성 물질의 한 종류인 금속-유기물 골격체(Metal-organic frameworks, MOFs)는 가스 흡착 및 분리를 목적으로 발전되었다. 그런데 MOF 구조의 수가 지속적으로 증가하고 있지만 시행착오 실험을 통해 우수한 MOF 기반의 분리막과 흡착제를 발견하는데 효율적이지 않다. 따라서 수소와 이산화탄소를 분리할 수 있는 고성능 다공성 물질의 발견을 가속화하기 위해 고속전산스크리닝(High-throughput computational screening) 기술이 등장하였고 현재까지 활용되고 있다. 본 리뷰에서는 다공성 물질에 대한 중요한 연구와 수소와 이산화탄소의 가스 분리에 초점을 맞춘 고속 전산스크리닝 기술을 소개한다.

Abstract AI-Helper 아이콘AI-Helper

Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In bo...

주제어

표/그림 (6)

참고문헌 (60)

  1. Chu, S., Cu, Y. and Liu, N., "The Path Towards Sustainable energy," Nat. Mater., 16, 16(2016). 

  2. Khan, M. A., Al-Shankiti, I., Ziania, A. and Idriss, H., "Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of Its Economic Viability," Sustain. Energy Fuels., 5, 1085-1094(2021). 

  3. Tollefson, J., "Hydrogen Vehicles: Fuel of the Future?," Nature, 464, 1262-1264(2010). 

  4. Chu, S., "Carbon Capture and Sequestration," Science, 325, 1599 (2009). 

  5. Tao, Y., Xue, Q., Liu, Z., Shan, M., Ling, C., Wu, T. and Li, X., "Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation," ACS Appl. Mater. Interfaces, 6, 8048-8058(2014). 

  6. Jaschik, J., Tanczyk, M., Warmuzinski, K. and Jaschik, M., "The Modeling of Multi-component Adsorption Equilibria in Hydrogen Recovery by Pressure Swing Adsorption," Chem. Process Eng., 30, 511-522(2009). 

  7. Sircar, S., Waldron, W. E., Rao, M. B. and Anand, M., "Hydrogen Production by Hybrid SMR-PSA-SSF Membrane System," Sep. Purif. Technol., 17, 11-20(1999). 

  8. Park, J. H., Kim, J. N., Cho, S. H., Kim, J. D. and Yang, R. T., "Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption," Chem. Eng. Sci., 53, 3951-3963 (1998). 

  9. Sholl, D. S. and Lively, R. P., "Seven Chemical Separations to Change the World," Nature, 532, 435-437(2016). 

  10. U.S. Department of Energy (DOE), "Materials for Separation Technologies: Energy and Emission Reduction Opportunities," (2005). 

  11. Sun, C., Wen, B. and Bai, B., "Application of Nanoporous Graphene Membranes in Natural Gas Processing: Molecular Simulations of CH 4 /CO 2 , CH 4 /H 2 S and CH 4 /N 2 Separation," Chem. Eng. Sci., 138, 616-621(2015). 

  12. Yang, R. T., Gas Separation by Adsorption Progress, Butterworth, Boston(1987). 

  13. Feng, X., Pan, C. Y., Ivory, J. and Ghosh, D., "Integrated Membrane/adsorption Process for Gas Separation," Chem. Eng. Sci., 53, 1689-1698(1998). 

  14. Lin, J. Y. S., "Molecular Sieves for Gas Separation," Science, 353, 6295(2016). 

  15. Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R. and Freeman, B. D., "Energy Efficient Polymeric Gas Separation Membranes for a Sustainable Future: a Review," Polymer, 54, 4729-4761(2013). 

  16. Peters, T. and Caravella, A., "Pd-based Membranes: Overview and Perspectives," Membranes, 9, 1-5(2019). 

  17. Nomura, M., Ono, K., Gopalakrishnan, S., Sugawara, T. and Nakao, S. I., "Preparation of a Stable Silica Membrane by a Counter Diffusion Chemical Vapor Deposition Method," J. Membr. Sci., 251, 151-158(2005). 

  18. Duval, J.-M., Kemperman, A. J. B., Folkers, B., Mulder, M. H. V., Desgrandchamps, G. and Smolders, C. A., "Preparation of Zeolite Filled Glassy Polymer Membranes," J. Appl. Polym. Sci., 54, 409-418(1994). 

  19. Murray, L. J., Dinca, M. and Long, J. R., "Hydrogen Storage in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1294-1314(2009). 

  20. Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. and Long, J. R., "Hydrogen Storage in a Microporous MetalOrganic Framework with Exposed Mn2+ Coordination Sites," J. Am. Chem. Soc., 128, 16876-16883(2006). 

  21. Han, S. S. and Goddard, W. A. III., "Lithium-Doped MetalOrganic Frameworks for Reversible H 2 Storage at Ambient Temperature," J. Am. Chem. Soc., 129, 8422-8423(2007). 

  22. Blomqvist, A., Araujo, C. M., Srepusharawoot, P. and Ahuja, R. L., "Li-decorated Metal-Organic Framework 5: A Route to Achieving a Suitable Hydrogen Storage Medium," Proc. Natl. Acad. Sci., 104, 20173-20176(2007). 

  23. Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L., Lee, J. H., Chang, J. S., Sung, H. J. and Ferey, G., "Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL100 and MIL-101," Angew. Chem. Int. Ed., 45, 8227-8231(2006). 

  24. Mavrandonakis, A., Klontzas, E., Tylianakis, E. and Froudakis, G. E., "Enhancement of Hydrogen Adsorption in Metal-Organic Frameworks by the Incorporation of the Sulfonate Group and Li Cations. A Multiscale Computational Study," J. Am. Chem. Soc., 131, 13410-13414(2009). 

  25. Mavrandonakis, A., Tylianakis, E., Stubos, A. K. and Froudakis, G. E., "Why Li Doping in MOFs Enhances H 2 Storage Capacity? A MultiScale Theoretical Study," J. Phys. Chem. C, 112, 7290-7294 (2008). 

  26. Daglar, H. and Keskin, S., "Recent Advances, Opportunities, and Challenges in High-throughput Computational Screening of MOFs for Gas Separations," Coord. Chem. Rev., 422, 213470 (2020). 

  27. An, J., Geib, S. J. and Rosi, N. L. "High and Selective CO 2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores," J. Am. Chem. Soc., 132, 38-39(2010). 

  28. Bae, Y. S. and Snurr, R. Q., "Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture," Angew. Chem. Int. Ed., 50, 11586-11596(2011). 

  29. Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs," Nature, 453, 207-211(2008). 

  30. Thallapally, P. K., Tian, J., Kishan, M. R., Fernandez, C. A., Dalgarno, S. J., McGrail, P. B., Warren, J. E. and Atwood, J. L., "Flexible (breathing) Interpenetrated Metal-organic Frameworks for CO 2 Separation Applications," J. Am. Chem. Soc., 130, 16842-16843(2008). 

  31. Beck, D. W., Zeolite Molecular Sieves, John Wiley & Sons, New York(1974). 

  32. Li, H., Eddaoudi, M., Groy, T. L. and Yaghi, O. M., "Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate)," J. Am. Chem. Soc., 120, 8571-8572(1998). 

  33. Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M., "The Chemistry and Applications of Metal-organic Frameworks," Science, 341, 1230444-1230444(2013). 

  34. Chen, B., Yang, Z., Zhu, Y. and Xia, Y., "Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications," J. Mater. Chem. A, 2, 16811-16831(2014). 

  35. Li, J.-R., Sculley, J. and Zhou, H.-C., "Metal-Organic Frameworks for Separations," Chem. Rev., 112, 869-932(2012). 

  36. Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. and Kim, K., "Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties," J. Am. Chem. Soc., 126, 32-33(2004). 

  37. Yeo, B. C., Kim, D., Kim, H. and Han, S. S., "High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation," J. Phys. Chem. C, 120, 24224-24230 (2016). 

  38. Park, J., Lively, R. P. and Sholl, D. S., "Establishing Upper Bounds on CO 2 Swing Capacity in Sub-ambient Pressure Swing Adsorption via Molecular Simulation of Metal-organic Frameworks," J. Mater. Chem. A, 5, 12258-12265(2017). 

  39. Chung, Y. G., Gomez-Gualdron, D. A., Li, P., Leperi, K. T., Deria, P., Zhang, H., Vermeulen, N. A., Stoddart, J. F., You, F. and Hupp, J. T., "In Silico Discovery of Metal-organic Frameworks for Precombustion CO 2 Capture Using a Genetic Algorithm," Sci. Adv., 2, 1600909(2016). 

  40. Krishna, R. and van Baten, J. M., "In Silico Screening of Metal- organic Frameworks in Separation Applications," Phys. Chem. Chem. Phys., 13, 10593-10616(2011). 

  41. Moghadam, P. Z., Li, A., Wiggin, S. B., Tao, A., Maloney, A. G. P., Wood, P. A., Ward, S. C. and Fairen-Jimenez, D., "Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future," Chem. Mater., 29, 2618-2625(2017). 

  42. Allen, F. H., "The Cambridge Structural Database: a Quarter of a Million Crystal Structures and Rising," Acta Crystallogr., Sect. B: Struct. Sci., 58, 380-388(2002). 

  43. Koyuturk, B., Altintas, C., Kinik, F. P., Keskin, S. and Uzun, A. "Improving Gas Separation Performance of ZIF-8 by [BMIM][BF 4 ] Incorporation: Interactions and Their Consequences on Performance," J. Phys. Chem. C, 121, 10370-10381(2017). 

  44. Altintas, C., Avci, G., Daglar, H., Gulcay, E., Erucar, I. and Keskin, S., "Computer Simulations of 4240 MOF Membranes for H 2 /CH 4 Separations: Insights into Structure-performance Relations," J. Mater. Chem. A, 6, 5836-5847(2018). 

  45. Avci, G., Velioglu, S. and Keskin, S., "High-Throughput Screening of MOF Adsorbents and Membranes for H 2 Purification and CO 2 Capture," ACS Appl. Mater. Interfaces, 10, 33693-33706 (2018). 

  46. Liszka, M., Malik, T. and Manfrida, G., "Energy and Exergy Analysis of Hydrogen-oriented Coal Gasification with CO 2 Capture," Energy, 45, 142-150(2012). 

  47. Martinez, I., Romano, M. C., Chiesa, P., Grasa, G. and Murillo, R., "Hydrogen Production Through Sorption Enhanced Steam Reforming of Natural Gas: Thermodynamic Plant Assessment," Int. J. Hydrogen Energy, 38, 15180-15199(2013). 

  48. Dzuryk, S. and Rezaei, E., "Intensification of the Reverse Water Gas Shift Reaction by Water-Permeable Packed-Bed Membrane Reactors," Ind. Eng. Chem. Res., 59, 18907-18920(2020). 

  49. Lim, D.-W., Ha, J., Oruganti, Y. and Moon, H. R., "Hydrogen Separation and Purification with MOF-based Materials," Mater. Chem. Front., 5, 4022-4041(2021). 

  50. Freeman, B. D., "Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes," Macromolecules 32, 375-380(1999). 

  51. Kang, Z., Xue, M., Fan, L., Huang, L., Guo, L., Wei, G., Chen, B. and Qiu, S., "Highly Selective Sieving of Small Gas Molecules by Using An Ultra-microporous Metal-organic Framework Membrane," Energy Environ. Sci., 7, 4053-4060(2014). 

  52. Kang, Z., Wang, S., Fan, L., Zhang, M., Kang, W., Pang, J., Du, X., Guo, H., Wang, R. and Sun, D., "In Situ Generation of Intercalated Membranes for Efficient Gas Separation," Chem. Commun., 1, 1-8(2018). 

  53. Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W. and He, G., "A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles," Catalysts 11, 393(2021). 

  54. Banu, A.-M., Friedrich, D., Brandani, S. and Dueren, T., "A Multiscale Study of MOFs as Adsorbents in H 2 PSA Purification," Ind. Eng. Chem. Res., 52, 9946-9957(2013). 

  55. Agueda, V. I., Delgado, J. A., Uguina, M. A., Brea, P., Spjelkavik, A. I., Blom, R., Grande, C., "Adsorption and Diffusion of H 2 , N 2 , CO, CH 4 and CO 2 in UTSA-16 Metal-organic Framework Extrudates," Chem. Eng. Sci., 124, 159-169(2015). 

  56. Brea, P., Delgado, J., Agueda, V. I., Gutierrez, P. and Uguina, M. A., "Multicomponent Adsorption of H 2 , CH 4 , CO and CO 2 in Zeolites NaX, CaX and MgX. Evaluation of Performance in PSA Cycles for Hydrogen Purification," Microporous Mesoporous Mater., 286, 187-198(2019). 

  57. Tong, M., Yang, Q. and Zhong, C., "Computational Screening of Covalent Organic Frameworks for CH 4 /H 2 , CO 2 /H 2 and CO 2 /CH 4 Separations," Microporous Mesoporous Mater., 210, 142-148(2015). 

  58. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., and Haranczyk, M., "Algorithms and Tools for High-throughput Geometry-based Analysis of Crystalline Porous Materials," Microporous Mesoporous Mater., 149, 134-141(2012). 

  59. Bakhshandeha, A. and Levin, Y., "Widom Insertion Method in Simulations with Ewald Summation," J. Chem. Phys. 156, 134110 (2022). 

  60. Li, S., Chung, Y. G. and Snurr, R. Q. "High-Throughput Screening of Metal-Organic Frameworks for CO 2 Capture in the Presence of Water," Langmuir 32, 10368-10376(2016). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로