$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초분광수심법 기반 대하천 합류부 하상측정 성능 평가
Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.56 no.3, 2023년, pp.195 - 210  

김동수 (단국대학교 토목환경공학과) ,  서영철 (단국대학교 토목환경공학과) ,  유호준 (K-Water 연구원) ,  권영화 (단국대학교 토목환경공학과)

초록
AI-Helper 아이콘AI-Helper

국내 대하천은 2010년 대규모 정비사업 이후 자연적 안정화를 위한 추가 재퇴적 및 침식이 진행 중에 있어 정밀 하상 모니터링이 요구되고 있다. 초분광수심법은 저수심의 고해상도 하천 수심측정 측면에서 종래의 접촉식 수심측정 기법을 대체하거나 보완할 수 있는 방법으로 각광을 받기 시작하였다. 본 연구는 초분광수심법에서 대표적인 최적밴드비기법을 소개하고 국내 대하천인 낙동강과 황강 합류부에서 평수기 전형적인 탁도조건에서 초분광수심법을 적용하여 수심맵을 산정하여 국내 하천으로의 적용성을 평가하였다. 이를 위해 수심영역별 최적밴드비기법으로 도출되는 상관도와 평균제곱근오차를 적용하여 최대측정가능수심을 산정하였고 최대추정가능수심 이상은 관계식 구축 시와 수심맵 산정 시 제외시켰다. 그리고 수심과 최적밴드비 관계(d-X)에 비선형성을 검토하여 적용하였다. 국내 대하천인 낙동강-황강 합류부에 적용한 결과는 다음과 같다. 첫째, 초분광수심법은 주로 저수심부에서 정밀한 수심맵을 효율적으로 산정할 수 있음을 보여주었고 최대측정가능수심은 통상적 탁도에서 낙동강의 경우 2.5 m로 나타났고, 탁도가 높은 지류의 경우 1.25 m로 나타났다. 둘째, 최대측정가능수심은 초분광수심법 하상 도출 시 다양한 시나리오의 배제수심을 고려하여 산정 및 적용되어야 하고, 이때 최적밴드비기법 적용 시 평균제곱근오차가 기존의 상관도 방식에 비해 최대측정가능수심 산정에 우수하였다. 셋째, 황강 합류부의 탁도가 높아 측정가능수심이 인근 낙동강에 비해 절반으로 낮아져 초분광수심법은 탁도가 높은 환경일 경우 한계가 있음을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly ...

주제어

표/그림 (12)

참고문헌 (46)

  1. Alvarez, L.V., Schmeeckle, M.W., and Grams, P.E. (2017). "A?detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river." Journal of Geophysical Research: Earth Surface, Vol. 122, pp. 25-49, doi:?10.1002/2016JF003895. 

  2. Benjankar, R., Tonina, D., McKean, J.A., Sohrabi, M.M., Chen, Q.,?and Vidergar, D. (2018). "Dam operations may improve aquatic?habitat and offset negative effects of climate change." Journal?of Environmental Management, Vol. 213, pp. 126-134. 

  3. Brasington, J., Rumsby, B.T., and McVey, R. (2000). "Monitoring?and modelling morphological change in braided river systems?using the global positioning system." Earth Surface Processes?and Landforms, Vol. 25, pp. 973-990. 

  4. Cha, Y.J., Shim, M., and Kim, S.K. (2011). "The four major rivers?restoration project." UN-Water International Conference, UN?WATER, Aragoza, Spain. 

  5. Conner, J.T., and Tonina, D. (2014). "Effect of cross-section interpolated bathymetry on 2D hydrodynamic model results in a?large river." Earth Surface Process and Landforms, Vol. 39,?pp. 463-475. 

  6. Corning (2017). Corning mircro HSI 410 SHARK: Integrated, coherent,?airborne hyperspectral imaging system. accssed 17 September,?2022, <https://www.corning.com/microsites/coc/oem/documents/hyperspectral-imaging/Corning-MicroHSI-410-SHARK-Brochure.pdf>. 

  7. Dierssen, H.M., Zimmerman, R.C., Lathers, R.A., Downes, T.V.,?and Davis, C.O. (2003). "Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution?airborne imagery." Limnology and Oceanography, Vol. 48,?No. 1, pp. 444-455. 

  8. Fausch, K.D., Torgersen, C.E., Baxter, C.V., and Li, H.W. (2002).?"Landscapes to riverscapes: Bridging the gap between?research and conservation of stream fishes: A continuous view?of the river is needed to understand how processes interacting?among scales set the context for stream fishes and their?habitat." BioScience, Vol. 52, No. 6, pp. 483-498. 

  9. Flener, C., Wang, Y., Laamanen, L., Kasvi, E., Vesakoski, J., and?Alho, P. (2015). "Empirical modeling of spatial 3D flow characteristics using a remote-controlled ADCP system: Monitoring a spring flood." Water, Vol. 7, No. 1, pp. 217-247. 

  10. Fonstad, M.A., and Marcus, W.A. (2010). "High resolution, basin?extent observations and implications for understanding river?form and process." Earth Surface Processes and Landforms,?Vol. 35, No. 6, pp. 680-698. 

  11. Guerrero, M., and Lamberti, A. (2011). "Flow field and morphology?mapping using ADCP and multibeam techniques: Survey in?the Po River." Journal of Hydraulic Engineering, Vol. 137,?No. 12, pp. 1576-1587. 

  12. Ji, U., Jang, E.K., and Kim, W. (2015). "Long-term bed change?analysis and equilibrium bed elevation prediction after weir?construction in Nakdong River." Journal of the Korea AcademiaIndustrial Cooperation Society, Vol. 16, No. 10, pp. 7089-7097. 

  13. Jun, K.S., and Kim, J.S. (2011). "The four major rivers restoration?project: Impacts on river flows." Journal of Civil Engineering,?KSCE, Vol. 15, No. 2, pp. 217-224. 

  14. Kasvi, E., Laamanen, L., Lotsari, E., and Alho, P. (2017). "Flow patterns and morphological changes in a sandy meander bend?during a flood - spatially and temporally intensive ADCP?measurement approach." Water, Vol. 9, No. 2, 106. 

  15. Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T., and Lane, S.N., (2019).?"Comparison of remote sensing based approaches for mapping?bathymetry of shallow, clear water rivers." Geomorphology,?Vol. 333, pp. 180-197. 

  16. Kim, S.J., and Kim, C.S. (2020). "Analysis of bed changes of the?Nakdong River with opening the weir gate." Ecology and?Resilient Infrastructure, Vol. 7, No. 4, pp. 353-365. 

  17. Koljonen, S., Huusko, A., Maki-Petays, A., Louhi, P., and Muotka,?T. (2012). "Assessing habitat suitability for juvenile atlantic?salmon in relation to in-stream restoration and discharge?variability." Resoration Ecology, Vol. 21, No. 3, pp. 344-352. 

  18. Lah, T.J., Park, Y., and Cho, Y.J. (2015). "The four major rivers?restoration project of South Korea: An assessment of its?process, program, and political dimensions." The Journal of?Environmental & Development, Vol. 24, No. 4, pp. 375-394. 

  19. Lee, C.J., Kim, D.G., Hwang, S.Y., Kim, Y.J., Jeong, S.J., Kim, S.N.,?and Cho, H.J. (2019a). "Dataset of long-term investigation on?change in hydrology, channel morphology, landscape and?vegetation along the Naeseong Stream (I)." Ecology and?Resilient Infrastructure, Vol. 6, No. 1, pp. 23-33. 

  20. Lee, C.J., Kim, D.G., Hwang, S.Y., Kim, Y.J., Jeong, S.J., Kim, S.N.,?and Cho, H.J. (2019b). "Dataset of long-term investigation on?change in hydrology, channel morphology, landscape and?vegetation along the Naeseong Stream (II)." Ecology and?Resilient Infrastructure, Vol. 6, No. 1, pp. 34-48. 

  21. Legleiter, C., and Fosness, R.L. (2019a). "Defining the limits of?spectrally based bathymetric mapping on a large river." Remote?Sensing, Vol. 11, No. 6, 665. 

  22. Legleiter, C., Overstreet, B., and Kinzel, P. (2018). "Sampling strategies to improve passive optical remote sensing of river?bathymetry." Remote Sensing, Vol. 10, No. 6, 935. 

  23. Legleiter, C.J. (2014). "A geostatistical framework for quantifying?the reach-scale morphology: 1. Variogram models, related metrics, spatial sturcture of river and relation to channel form."?Geomorphology, Vol. 427, No. 205, pp. 65-84. 

  24. Legleiter, C.J., and Harrison, L.R. (2019b). "Remote sensing of river?bathymetry: Evaluating a range of sensors, platforms, and?algorithms on the upper sacramento river, California, USA."?Water Resources Research, Vol. 55, No. 3, pp. 2142-2169. 

  25. Legleiter, C.J., Roberts, D.A., and Lawrence, R.L. (2009). "Spectrally?based remote sensing of river bathymetry" Earth Surface?Processes and Landforms, Vol. 34, No. 8, pp. 1039-1059. 

  26. Lyzenga, D.R. (1978). "Passive remote sensing techniques for mapping water depth and bottom features." Applied Optics, Vol.?17, No. 3, pp. 379-383. doi: 10.1364/ao.17.000379. 

  27. Lyzenga, D.R. (1985). "Shallow-water bathymetry using combined?lidar and passive multispectral scanner data." International?Jouranl of Remote Sensing, Vol. 6, No. 1, pp. 115-125. 

  28. Maritorena, S., Morel, A., and Gentili, B. (1994). "Diffuse reflectance?of oceanic shallow waters: Influence of water depth and bottom?albedo." Limnology And Oceanography, Vol. 39, No. 7, pp.?1867-1872. 

  29. McKean, J., Tonina, D., Bohn, C., and Wright, C.W. (2014). "Effects?of bathymetric lidar errors on flow properties predicted with a?multi-dimensional hydraulic model." Journal of Geophysical?Research: Earth Surface, Vol. 119, No. 3, pp. 644-664. doi:?10.1002/2013JF002897. 

  30. Mertes, L.A. (2002). "Remote sensing of riverline landscapes." Freshwater Biology, Vol. 47, No. 4, pp. 799-816. 

  31. Mobley, C.D. (1999). "Estimation of the remote-sensing reflectance?from above-surface measurements." Applied Optics, Vol. 38,?No. 36, pp. 7442-7455. 

  32. Mobley, C.D., and Sundman, L.K. (2001). Hydrolight 4.2 technical?documentation. Sequoia Scentific Inc., Washington, D.C., U.S. 

  33. Muste, M., Yu, K., Fujita, I., and Ettema, R. (2009). "Two-phase?flow insights into open-channel flows with suspended particles?of different densities." Journal of Environmental Fluid Mechanics, Vol. 9, No. 2, pp. 161-186. doi: 10.1007/s10652-008-9102-7. 

  34. Pan, Z., Glennie, C., Legleiter, C., and Overstreet, B. (2015). "Estimation of water depths and turbidity from hyperspectral imagery?using support vector regression." Geoscience and Remote?Sensing, Vol. 12, No. 10, pp. 2165-2169. 

  35. Parsapour-Moghaddam, P., Brennan, C., Rennie, C.D., Elvidge, C.K.,?and Cooke, S. (2019). "Impacts of channel morphodynamics?on fish habitat utilization." Environmental Management, Vol.?64, pp. 272-286. 

  36. Philpot, W.D. (1989). "Bathymetirc mapping with passive multispectral imagery." Applied Optics, Vol. 28, No. 8, pp. 1569-1578. 

  37. River Act (2016). "River Act." Ministry of Environment, Revised?2016.7.19. Accessed 2 March 2023, <https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%ED%95%98%EC%B2%9C%EB%B2%95>. 

  38. Shintani, C., and Fonstad, M. (2017). "Comparing remote-sensing?techniques collecting bathymetric data from a gravel-bed river."?International Journal of Remote Sensing, Vol. 38, No. 8-10,?pp. 2883-2902. 

  39. Stumpf, R.P., Holderied, K., and Sinclair, M. (2003). "Determination?of water depth with high-resolution satellite imagery over?variable bottom types." Limnology and Oceanography, Vol.?48, No. 1, pp. 547-556. doi: 10.4319/lo.2003.48.1_part_2.0547. 

  40. Tonina, D., McKean, J.A., Benjankar, R.M., Wright, C.W., Goode,?J.R., Chen, Q., Reeder, W.J., Carmichael, R.A., and Edmondson,?M.R. (2019). "Mapping river bathymetries: Evaluating topobathymetric LiDAR survey." Earth Surface Processes and?Landforms, Vol. 44, pp. 507-520. 

  41. Westaway, R.M., Lane, S.N., and Hicks, D.M. (2003). "Remote?survey of large-scale braided, gravel-bed rivers using digital?photogrammetry and image analysis." International Journal?of Remote Sensing, Vol. 24, pp. 795-815. 

  42. Yorke, T.H., and Oberg, K.A. (2002). "Measuring river velocity and?discharge with acoustic Doppler profilers." Flow Measurement?and Instrumentation, Vol 13, pp. 191-195. 

  43. You, H., and Kim, D. (2021). "Development of an image registration?technique for fluvial hyperspectral imagery using an optical?flow algorithm." Sensors, Vol. 21, No. 7, 2407. 

  44. You, H.J. (2018). Development of riverine bathymetry survey technique?using drone-based hyperspectral image. Ph. D. Dissertation,?Dankook University. 

  45. You, H.J., Kim, D.S., and Shin, H.S. (2020). "Evaluation of depth?measurement method based on spectral characteristics using?hyperspectrometer." Korean Journal of Remote Sensing, Vol.?36, No. 2-1, pp. 103-119. 

  46. Zhao, J., Zhang, X., Zhang, H., and Zhou, F. (2017). "Shallow water?measurements using a single green laser corrected by building a?near water surface penetration model." Remote Sensing, Vol.?9, No. 5, 426. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로