$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

충진물로 PEI-GOZIF-8를 사용한 PEBAX 혼합막의 CO2 분리 성능
CO2 Separation Performance of PEBAX Mixed Matrix Membrane Using PEI-GOZIF-8 as Filler 원문보기

멤브레인 = Membrane Journal, v.33 no.1, 2023년, pp.23 - 33  

이은선 (상명대학교 화공신소재학과) ,  홍세령 (상명대학교 계당교양교육원) ,  이현경 (상명대학교 화공신소재학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 PEBAX 2533에 합성된 PEI-GO@ZIF-8의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/PEI-GO@ZIF-8 혼합막의 N2 투과도는 PEI-GO@ZIF-8 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO@ZIF-8 함량에 따라 다른 경향을 보였는데 순수 PEBAX 막에서 PEI-GO@ZIF-8 0.1 wt%까지 CO2 투과도는 증가하다가 그 이후의 함량에서는 감소하였다. PEI-GO@ZIF-8 0.1 wt% 혼합막은 CO2 투과도 221.9 Barrer, CO2/N2 선택도는 60.0으로, 제조된 혼합막들 중 CO2 투과도와 CO2/N2 선택도가 향상되어 가장 높은 투과 특성을 보였고 Robeson upper-bound에 도달하는 결과를 얻었다. 이는 충진물이 PEBAX 내에 고루 분산되면서 CO2와 친화적인 상호작용을하는 GO의 -COOH, -O-, -OH 작용기와 PEI에 결합된 아민기 그리고 CO2에 대해 gate-opening 현상이 일어나는 ZIF-8의 영향 때문이다.

Abstract AI-Helper 아이콘AI-Helper

In this study, a mixed matrix membrane was prepared by varying the contents of PEI-GO@ZIF-8 synthesized in PEBAX 2533, and the permeation characteristics of N2 and CO2 were studied. The N2 permeability of the PEBAX/PEIGO@ZIF-8 mixed matrix membrane decreased as the PEI-GO@ZIF-8 content increased, an...

주제어

참고문헌 (39)

  1. T. Ghanbari, F. Abnisa, and W. M. A. W. Daud, "A review on production of metal organic frameworks (MOF) for CO 2 adsorption", Sci. Total Environ., 707, 135090 (2020). 

  2. M. Spek, T. Fout, M. Garcia, V. N. Kuncheekanna, M. Matuszewski, S. McCoy, J. Morgan, S. M. Nazir, A. Ramirez, S. Roussanaly, and E. S. Rubin, "Uncertainty analysis in the techno-economic assessment of CO 2 capture and storage technologies. Critical review and guidelines for use", Int. J. Greenh. Gas Control, 100, 103113 (2020). 

  3. N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, and C. Klaysom, "Recent membrane developments for CO 2 separation and capture", Chem. Eng. Technol, 41, 211 (2018). 

  4. A. W. Thornton, D. Dubbeldam, M. S. Liu, B. P. Ladewig, A. J. Hill, and M. R. Hill, "Feasibility of zeolitic imidazolate framework membranes for clean energy applications" Energy Environ. Sci., 5, 7637 (2012). 

  5. Z. X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, "Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers", Chem. Rev., 118, 5871 (2018). 

  6. M. M. H. S. Buddin and A. L. Ahmad, "A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO 2 separation" J. CO2 Util., 51, 101616 (2021). 

  7. H. H. Tseng, I. A. Kumar, T. H. Weng, C. Y. Lu, and M. Y. Wey, "Preparation and characterization of carbon molecular sieve membranes for gas separation-the effect of incorporated multi-wall carbon nanotubes", Desalination, 240, 40 (2009). 

  8. A. Ehsani and M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/ Pebax2533 mixed matrix membrans", J. Taiwan Inst. Chem. Eng., 66, 414 (2016). 

  9. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). 

  10. M. D. Pravin and A. Gnanamani, "Preparation, characterization and reusability efficacy of amine functionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase", RSC Adv., 8, 38416 (2018). 

  11. N. Nidamanuri, Y. Li, Q. Li, and M. Dong, "Graphene and graphene oxide-based membranes for gas separation", Eng. Sci., 9, 3 (2020). 

  12. R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, "Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture", Membranes, 10, 188 (2020). 

  13. S. Castarlenas, C. Tellez, and J. Coronas, "Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids", J. Membr. Sci, 526, 205 (2017). 

  14. A. Huang and B. Feng, "Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO 2 capture", Int. J. Hydrogen Energy, 43, 2224 (2018). 

  15. H. Tai, Y. Zhen, C. Liu, Z. Ye, G. Xie, X. Du, and Y. Jiang, "Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film", Sensors Actuators B: Chem., 230, 501 (2016). 

  16. X. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine- modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO 2 capture", Energy Fuels, 16, 1463 (2002). 

  17. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, and H. Wu, "Efficient CO 2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes", ACS Appl. Mater. Interfaces, 7, 5528 (2015). 

  18. X. Gong, Y. Wang, and T. Kuang, "ZIF-8-Based membranes for carbon dioxide capture and separation", ACS Sustainable Chem. Eng., 5, 11204 (2017). 

  19. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "Zeolite A imidazolate frameworks", Nat. Mater., 6, 501 (2007). 

  20. V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO 2 capture", J. Membr. Sci., 459, 244 (2014). 

  21. B. Chen, C. Wan, X. Kang, M. Chen, C. Zhang, Y. Bai, and L. Dong, "Enhanced CO 2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO", Sep. Purif. Technol., 223, 113 (2019). 

  22. L. Dong, M. Chen, J. L. D. Shi, W. Dong, X. Li, and Y. Bai, "Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO 2 separation performance of mixed matrix membranes", J. Membr. Sci., 520, 801 (2016). 

  23. E. S. Yi and S. R. Hong, "Gas permeation characteristics of PEBAX mixed membranes contaning polyethylenimine-modified GO", Membr. J., 31, 404 (2021). 

  24. Y. Zhang, Y. Jia, and L. Hou, "Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM2.5 removal", RSC Adv., 8, 31417 (2018). 

  25. Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, and L. Zhao, "One-step fabrication of PEI-modified GO particles for CO 2 capture", Appl. Phys. A, 125, 160 (2019). 

  26. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, and T. Matsuura, "Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concetrations of triethylamine", RSC Adv., 4, 33292 (2014). 

  27. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock-amide) for gas separation applications", J. Membr. Sci., 510, 270-283 (2016). 

  28. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, "CO 2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions", Microporous Mesoporous Mater., 267, 53 (2018). 

  29. R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, and G. He, "Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO 2 /N2 separation", Sep. Purif. Technol., 236, 116209 (2020). 

  30. S. Wang, J. Cui, S. Zhang, X. Xie, and W. Xia, "Enhancement thermal stability and CO 2 adsorption property of ZIF-8 by pre-modification with polyaniline", Mater. Res. Express, 7, 025304 (2020). 

  31. L. Xu, L. Xiang, C. Wang, J. Yu, L. Zhang, and Y. Pan, "Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals", Chin. J. Chem. Eng., 25, 882 (2017). 

  32. A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "CO 2 /CH 4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane", J. Nat. Gas Sci. Eng., 31, 562 (2016). 

  33. M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010). 

  34. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphen oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015). 

  35. T. Hou, L. Shu, K. Guo, X. Zhang, S. Zhou, M. He, and J. Yao, "Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation", Cellulose, 27, 3277 (2020). 

  36. G. J. Shin, K. Y. Rhee, and S. J. Park, "Improvement of CO 2 capture by graphite oxide in presence of polyethylenimine", Int. J. Hydrogen Energy, 41, 14351 (2016). 

  37. C. Jiao, Z. Li, X. Li, M. Wu, and H. Jiang, "Improved CO 2 /N 2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8", Sep. Purif. Technol., 259, 118190 (2021). 

  38. D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, "Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO 2 separation", RSC Adv., 8, 6099 (2018). 

  39. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로