$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Reduced Tomato Bacterial Wilt by Ferrous Chloride Application 원문보기

Research in plant disease = 식물병연구, v.29 no.1, 2023년, pp.82 - 87  

Hyeon Ji Kim (Division of Horticultural Science, Gyeongsang National University) ,  Su Min Kim (Division of Horticultural Science, Gyeongsang National University) ,  Yeon Hwa Kim (Division of Horticultural Science, Gyeongsang National University) ,  Jeong Hoon Park (Division of Horticultural Science, Gyeongsang National University) ,  Dong Ki Kang (Division of Horticultural Science, Gyeongsang National University) ,  Jae Gill Yun (Division of Horticultural Science, Gyeongsang National University) ,  Ryoung Shin (RIKEN Center for Sustainable Resource Science) ,  Jeum Kyu Hong (Division of Horticultural Science, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

Exogenous ferrous chloride (FeCl2) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl2 reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl2 did not affect the fresh weight of ...

주제어

표/그림 (2)

참고문헌 (43)

  1. Ahammed, G. J., Wu, M., Wang, Y., Yan, Y., Mao, Q., Ren, J. et al. 2020.?Melatonin alleviates iron stress by improving iron homeostasis,?antioxidant defense and secondary metabolism in cucumber.?Sci. Hortic. 265: 109205. 

  2. Awan, Z. A., Shoaib, A. and Khan, K. A. 2019. Crosstalk of Zn in combination with other fertilizers underpins interactive effects and?induces resistance in tomato plant against early blight disease.?Plant Pathol. J. 35: 330-340. 

  3. Aznar, A., Chen, N. W. G., Thomine, S. and Dellagi, A. 2015. Immunity?to plant pathogens and iron homeostasis. Plant Sci. 240: 90-97. 

  4. Bakeer, A. R. T., Abdel-Latef, M. A. E., Afifi, M. A. and Barakat, M. E.?2012. Application of microelements and sodium and potassium?salts on tomato plants and their role in suppressing powdery?mildew disease. World Res. J. Plant Pathol. 1: 1-10. 

  5. Berry, S. Z., Madumadu, G. G. and Uddin, M. R. 1988. Effect of calcium and nitrogen nutrition on bacterial canker disease of tomato. Plant Soil 112: 113-120. 

  6. Blachinski, D., Shtienberg, D., Dinoor, A., Kafkafi, U., Sujkowski, L. S.,?Zitter, T. A. et al. 1996. Influence of foliar application of nitrogen?and potassium on Alternaria diseases in potato, tomato and?cotton. Phytoparasitica 24: 281-292. 

  7. Choi, S. Y., Kim, N. G., Kim, S.-M. and Lee, B. C. 2022. First report of?bacterial wilt by Ralstonia pseudosolanacearum on peanut in?Korea. Res. Plant Dis. 28: 54-56. (In Korean) 

  8. Deberdt, P., Guyot, J., Coranson-Beaudu, R., Launay, J., Noreskal,?M., Riviere, P. et al. 2014. Diversity of Ralstonia solanacearum in?French Guiana expands knowledge of the "emerging ecotype".?Phytopathology 104: 586-596. 

  9. Ding, S., Shao, X., Li, J., Ahammed, G. J., Yao, Y., Ding, J. et al. 2021. Nitrogen forms and metabolism affect plant defence to foliar and?root pathogens in tomato. Plant Cell Environ. 44: 1596-1610. 

  10. Dordas, C. 2008. Role of nutrients in controlling plant diseases in?sustainable agriculture: a review. Agron. Sustain. Dev. 28: 33-46. 

  11. Duffy, B. K. and Defago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens?and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:?1250-1257. 

  12. Duffy, B. K. and Defago, G. 1999. Macro- and microelement fertilizers influence the severity of Fusarium crown and root rot of?tomato in a soilless production system. HortScience 34: 287-291. 

  13. Fleurat-Lessard, P., Dedaldechamp, F., Thibault, F., Bere, E. and Roblin,?G. 2011. Antifungal effects of iron sulfate on grapevine fungal?pathogens. Sci. Hortic. 130: 517-523. 

  14. Flores-Cruz, Z. and Allen, C. 2009. Ralstonia solanacearum encounters an oxidative environment during tomato infection. Mol.?Plant-Microbe Interact. 22: 773-782. 

  15. Hashem, A. R. 1995. Influence of iron on the growth of the tomato?wilt pathogen, Fusarium oxysporum, isolated in Saudi Arabia. J.?Plant Dis. Prot. 102: 326-330. 

  16. Heine, G., Max, J. F. J., Fuhrs, H., Moran-Puente, D. W., Heintz, D. and?Horst, W. J. 2011. Effect of manganese on the resistance of?tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci. 174: 827-836. 

  17. Hong, J. K., Jang, S. J., Lee, Y. H., Jo, Y. S., Yun, J. G., Jo, H. et al. 2018a.?Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid mixture treatment. Plant Pathol. J. 34: 78-84. 

  18. Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H. et al.?2018b. Alternaria spots in tomato leaves differently delayed by?four plant essential oil vapours. Res. Plant Dis. 24: 292-301. 

  19. Hong, J. K., Kang, S. R., Kim, Y. H., Yoon, D. J., Kim, D. H., Kim, H. J. et?al. 2013. Hydrogen peroxide- and nitric oxide-mediated disease?control of bacterial wilt in tomato plants. Plant Pathol. J. 29: 386-396. 

  20. Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H. et?al. 2016. Differential control efficacies of vitamin treatments?against bacterial wilt and grey mould diseases in tomato plants.?Plant Pathol. J. 32: 469-480. 

  21. Jiang, J.-F., Li, J.-G. and Dong, Y.-H. 2013. Effect of calcium nutrition?on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. Eur. J. Plant Pathol. 136: 547-555. 

  22. Jiang, J. F., Wan, X., Li, J. G. and Dong, Y. H. 2016. Effect of boron nutrition on resistance response of tomato against bacterial wilt?caused by Ralstonia solanacearum. J. Plant Pathol. 98: 117-122. 

  23. Jo, Y. S., Park, H. B., Kim, J. Y., Choi, S. M., Lee, D. S., Kim, D. H. et al.?2020. Menadione sodium bisulfite-protected tomato leaves?against grey mould via antifungal activity and enhanced plant?immunity. Plant Pathol. J. 36: 335-345. 

  24. Jogaiah, S., Abdelrahman, M., Tran, L.-S. and Shin-ichi, I. 2013. Characterization of rhizosphere fungi that mediate resistance in?tomato against bacterial wilt disease. J. Exp. Bot. 64: 3829-3842. 

  25. John, R., Ahmad, P., Gadgil, K. and Sharma, S. 2009. Heavy metal?toxicity: effect on plant growth, biochemical parameters and?metal accumulation by Brassica juncea L. Int. J. Plant Prod. 3: 65-76. 

  26. Kurabachew, H. and Wydra, K. 2013. Characterization of plant?growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control 67: 75-83. 

  27. Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. et?al. 2012. Chemical pesticides and plant essential oils for disease?control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. 

  28. Li, G., Kronzucker, H. J. and Shi, W. 2016. Root developmental adaptation to Fe toxicity: mechanisms and management. Plant?Signal. Behav. 11: e1117722. 

  29. Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G.?and Wei, Y. 2007. Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci. 120: 596-605. 

  30. Macur, R. E., Mathre, D. E. and Olsen, R. A. 1991. Interactions between iron nutrition and Verticillium wilt resistance in tomato.?Plant Soil 134: 281-286. 

  31. Muthoni, J., Shimelis, H., Melis, R. and Kinyua, Z. M. 2014. Response?of potato genotypes to bacterial wilt caused by Ralstonia solanacearum (Smith) (Yabuuchi et al.) in the tropical highlands.?Am. J. Potato Res. 91: 215-232. 

  32. Pradhanang, P. M., Momol, M. T., Olson, S. M. and Jones, J. B. 2003.?Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87:?423-427. 

  33. Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F. and Briat, J.-F. 2015.?Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture. Mol. Plant?8: 439-453. 

  34. Singh, D., Yadav, D. K., Sinha, S. and Choudhary, G. 2014. Effect of?temperature, cultivars, injury of root and inoculums load of?Ralstonia solanacearum to cause bacterial wilt of tomato. Arch.?Phytopathol. Plant Prot. 47: 1574-1583. 

  35. Souri, M. K., Hatamian, M. and Tesfamariam, T. 2019. Plant growth?stage influences heavy metal accumulation in leafy vegetables?of garden cress and sweet basil. Chem. Biol. Technol. Agric. 6: 25. 

  36. Swanson, J. K., Yao, J., Tans-Kersten, J. and Allen, C. 2005. Behavior of?Ralstonia solanacearum race 3 biovar 2 during latent and active?infection of geranium. Phytopathology 95: 136-143. 

  37. Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y. et al. 2013. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance?and controls the bacterial wilt of tomato. Pest Manag. Sci. 69:?1245-1252. 

  38. Tano, J., Ripa, M. B., Tondo, M. L., Carrau, A., Petrocelli, S., Rodriguez,?M. V. et al. 2021. Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization?of tomato plants. Sci. Rep. 11: 14531. 

  39. Tewari, R. K., Hadacek, F., Sassmann, S. and Lang, I. 2013. Iron deprivation-induced reactive oxygen species generation leads to?non-autolytic PCD in Brassica napus leaves. Environ. Exp. Bot. 91:?74-83. 

  40. Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Minkina, T., Srivastava,?A. K. et al. 2022. Plant mineral nutrition and disease resistance:?a significant linkage for sustainable crop protection. Front. Plant?Sci. 13: 883970. 

  41. Turhadi, T., Hamim, H., Ghulamahdi, M. and Miftahudin, M. 2019.?Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signal.?Behav. 14: 1682829. 

  42. Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S. et al. 2022. Silica?nanoparticles activate defense responses by reducing reactive?oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28: 100418. 

  43. Yamazaki, H. and Hoshina, T. 1995. Calcium nutrition affects resistance of tomato seedlings to bacterial wilt. HortScience 30: 91-93. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로