$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

부산지역 광화학 오존 생성 regime 분석 - 수도권과 비교연구 (Ⅳ)
Analysis of Photochemical Ozone Formation Regime in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area(Ⅳ) 원문보기

Journal of environmental science international = 한국환경과학회지, v.32 no.5, 2023년, pp.285 - 301  

백승희 (부산대학교 대기환경과학과) ,  이효정 (부산대학교 대기환경과학과) ,  김철희 (부산대학교 대기환경과학과)

Abstract AI-Helper 아이콘AI-Helper

This study analyzed characteristics of ozone (O3) formation regimes in Busan over a period of recent five years (2015~2019) and compared the findings with those obtained in Seoul. We employed four observed variations: early morning commuting-hour (i.e., 06:00-09:00 LST) nitrogen dioxide (NO2), peak-...

주제어

참고문헌 (46)

  1. Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., San Jose, R., Perez, J., Guerrero, P. J., Baro, R., Makar, P., 2015, A multi-model assessment for the 2006 and 2010 simulations under the air quality model evaluation international initiative (AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity of O 3 and PM 2.5 formation regimes, Atmos. Environ., 115, 569-586. 

  2. Chang, L. S., Choi, J. Y., Son, J., Lee, S., Lee, D., Jo, Y. J., Kim, C. H., 2020, Interpretation of decadal-scale ozone production efficiency in the Seoul metropolitan area: implication for ozone abatement, Atmos. Environ., 243, 117846. 

  3. Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Poschl, U., Su, H., 2016, Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, e1601530. 

  4. Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C., Yang, N., Ma, H., Ma, J., Russell, A. G., He, H., 2020, Air pollutant correlations in China: secondary air pollutant responses to NO x and SO 2 control, Environ. Sci. Technol. Lett., 7, 695-700. 

  5. Chung, Y. S., Chung, J. S., 1991, On surface ozone observed in the Seoul metropolitan area during 1989 and 1990, J. Korean Soc. Atmos., 7, 169-179. 

  6. Costabile, F., Allegrini, I., 2007, Measurements and analyses of nitrogen oxides and ozone in the yard and on the roof of a street-canyon in Suzhou, Atmos. Environ., 41, 6637-6647. 

  7. Du, X., Tang, W., Cheng, M., Zhang, Z., Li, Y., Li, Y., Meng, F., 2022, Modeling of spatial and temporal variations of ozone-NO x -VOC sensitivity based on photochemical indicators in China, J. Environ. Sci., 114, 454-464. 

  8. Duenas, C., Fernandez, M. C., Canete, S., Carretero, J., Liger, E., 2002, Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast, Sci. Total Environ., 299, 97-113. 

  9. Ghim, Y. S., Chang, Y. S., 2000, Characteristics of ground-level ozone distributions in Korea for the period of 1990-1995, J. Geophys. Res. Atmos., 105, 8877-8890. 

  10. Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., Zhang, X., 2011, Analysis of the relationship between O 3 , NO and NO 2 in Tianjin, China, Aerosol Air Qual. Res., 11, 128-139. 

  11. Itahashi, S., Irie, H., Shimadera, H., Chatani, S., 2022, Fifteen-year trends (2005-2019) in the satellite-derived ozone-sensitive regime in East Asia: A gradual shift from VOC-Sensitive to NO x -Sensitive, Remote Sens., 14, 4512-4531. 

  12. Jia, M., Zhao, T., Cheng, X., Gong, S., Zhang, X., Tang, L., Liu, D., Wu, X., Wang, L., Chen, Y., 2017, Inverse relations of PM 2.5 and O 3 in air compound pollution between cold and hot seasons over an urban area of East China, Atmos., 8, 59-70. 

  13. Kang, Y. H., Kim, Y. K., Hwang, M. K., Jeong, J. H., Kim, H., Kang, H. S., 2019, Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area, J. Environ. Sci. Int., 28, 169-182. 

  14. Kim, J., Ghim, Y. S., Han, J. S., Park, S. M., Shin, H. J., Lee, S. B., Kim, J., Lee, G., 2018, Long-term trend analysis of Korean air quality and its implication to current air quality policy on ozone and PM 10 , J. Korean Soc. Atmos., 34, 1-15. 

  15. KEC (Korea Environment Corporation), 2019, Airkorea, https://www.airkorea.or.kr. 

  16. KMA (Korea Meteorological Administration), 2019, https://data.kma.go.kr. 

  17. Lee, G., Jang, Y., Lee, H., Han, J. S., Lim, K. R., Lee, M., 2008, Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea, Chemosphere, 73, 619-628. 

  18. Lee, H. J., Chang, L. S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., Jo, H. Y., Jo, Y. J., Lee, J. B., Kim, C. H., 2021, Ozone continues to increase in East Asia despite decreasing NO 2 : causes and abatements, Remote Sens., 13, 2177-2193. 

  19. Lee, H. J., Chang, L. S., Jaffe, D. A., Bak, J., Liu, X., Abad, G. G., Jo, H. Y., Jo, Y. J., Lee, J. B., Yang, G. H., Kim, J. M., Kim, C. H., 2022, Satellite-based diagnosis and numerical verification of ozone formation regimes over nine megacities in East Asia, Remote Sens., 14, 1285-1301. 

  20. Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Streets, D. G., Fu, J. S., Jang, C. J., 2012, Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system, Atmos. Chem. Phys., 12, 10971-10987. 

  21. Li, S., Wang, T., Huang, X., Pu, X., Li, M., Chen, P., Yang, X. Q., Wang, M., 2018, Impact of East Asian summer monsoon on surface ozone pattern in China, J. Geophys. Res. Atmos., 123, 1401-1411. 

  22. Li, Y., Cheng, M., Guo, Z., He, Y., Zhang, X., Cui, X., Chen, S., 2020, Increase in surface ozone over Beijing-Tianjin-Hebei and the surrounding areas of China inferred from satellite retrievals, 2005-2018, Aerosol Air Qual. Res., 20, 2170-2184. 

  23. Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J., Liu, S., 2013, Importance of NO x control for peak ozone reduction in the Pearl River Delta region, J. Geophys. Res. Atmos., 118, 9428-9443. 

  24. Lin, J. T., Youn, D., Liang, X. Z., Wuebbles, D. J., 2008, Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions, Atmos. Environ., 42, 8470-8483. 

  25. Lu, K., Fuchs, H., Hofzumahaus, A., Tan, Z., Wang, H., Zhang, L., Schmitt, S. H., Rohrer, F., Bohn, B., Broch, S., Dong, H., Gkatzelis, G. I., Hohaus, T., Holland, F., Li, X., Liu, Y., Liu, Y., Ma, X., Novelli, A., Schlag, P., Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., Zhang, Y., 2019, Fast photochemistry in wintertime haze: consequences for pollution mitigation strategies, Environ. Sci. Technol., 53, 10676-10684. 

  26. Ma, X., Huang, J., Zhao, T., Liu, C., Zhao, K., Xing, J., Xiao, W., 2021, Rapid increase in summer surface ozone over the North China Plain during 2013-2019: a side effect of particulate matter reduction control?, Atmos. Chem. Phys., 21, 1-16. 

  27. Mahato, S., Pal, S., Ghosh, K. G., 2020, Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India, Sci. Total Environ., 730, 139086-139108. 

  28. MOE (Ministry Of Environment), 2021, Annual report of air quality in Korea, 2020. 

  29. Oh, I. B., Kim, Y. K., Lee, H. W., Kim, C. H., 2006, An Observational and numerical study of the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea, Atmos. Environ., 40, 1284-1298. 

  30. Oltmans, S. J., Levy, H., 1994, Surface ozone measurements from a global network, Atmos. Environ., 28, 9-24. 

  31. Park, S. U., Lee, Y. H., 2001, Spatial distribution of wet deposition of nitrogen in South Korea, Atmos. Environ., 36, 619-628. 

  32. Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., Inoue, Y., 2006, Ground level ozone concentrations and its association with NO x and meteorological parameters in Kathmandu Valley, Nepal, Atmos. Environ., 40, 8081-8087. 

  33. Pugliese, S. C., Murphy, J. G., Geddes, J. A., Wang, J. M., 2014, The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area, Atmos. Chem. Phys., 14, 8197-8207. 

  34. Sanchez, M. L., Torre, B. D., Garcia, M. A., Pereza, I., 2007, Ground-level ozone and ozone vertical profile measurements close to the footfills of the Guadarrama Mountain Range (Spain), Atmos. Environ., 41, 1302-1314. 

  35. Shin, B., Lee, M., Lee, J., Shim, J. S., 2007, Seasonal and Diurnal Variations of Surface Ozone at Ieodo in the East China Sea, J. Korean Soc. Atmos., 23, 631-639. 

  36. Sicard, P., Marco, A. D., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., Calatayud, V., 2020, Amplified ozone pollution in cities during the COVID-19 lockdown, Sci. Total Environ., 735, 139542-139551. 

  37. Sillman, S., 1999, The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments, Atmos. Environ., 33, 1821-1845. 

  38. Tu, J., Xia, Z. G., Wang, H., Li, W., 2007, Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China, Atmos. Res., 85, 310-337. 

  39. U.S. EPA (Environmental Protection Agency), 1998, Guideline on data handling conventions for the 8-hour ozone NAAQS, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2_old/19981201_oaqps_epa-454_r-99-017.pdf. 

  40. U.S. EPA (Environmental Protection Agency), 2006, Air quality criteria for ozone and related photochemical oxidants, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20060228_ord_epa-600_r-05-004af_ozone_criteria_document_vol-1.pdf. 

  41. Vellingiri, K., Kim, K. H., Jeon, J. Y., Brown, R. J. C., Jung, M. C., 2015, Changes in NO x and O 3 concentrations over a decade at a central urban area of Seoul, Korea, Atmos. Environ., 112, 116-125. 

  42. Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., Zhang, L., 2017, Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582-1596. 

  43. Wasti, S., Wang, Y., 2022, Spatial and temporal analysis of HCHO response to drought in South Korea, Sci. Total Environ., 852, 157451-157461. 

  44. Wie, J., Moon, B. K., 2018, Impact of the Western North Pacific subtropical high on summer surface ozone in the Korean Peninsula, Atmos. Pollut. Res., 9, 655-661. 

  45. Winkler, P., 1988, Surface ozone over the Atlantic, J. Atmos. Chem., 7, 73-91. 

  46. Yeo, M. J., Kim, Y. P., 2021, Long-term trends of surface ozone in Korea, J. Clean. Prod., 294, 125352-125362. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로