$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성
Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.56 no.2, 2023년, pp.137 - 146  

김연진 (인하대학교 화학.화학공학융합학과) ,  정린 (인하대학교 화학.화학공학융합학과) ,  이재원 (인하대학교 화학.화학공학융합학과) ,  유정은 (인하대학교 화학.화학공학융합학과) ,  이기영 (인하대학교 화학.화학공학융합학과)

Abstract AI-Helper 아이콘AI-Helper

Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocataly...

주제어

표/그림 (8)

참고문헌 (39)

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at semiconductor electrode, Nature, 238 (1972) 37-38. 

  2. S. Albu, P. Schmuki, Highly defined and ordered top-openings in TiO 2 nanotube arrays, Phys. Status Solidi RRL, 4 (2010) 151-153. 

  3. P. Roy, S. Berger, P. Schmuki, TiO 2 nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50 (2011) 2904-2939. 

  4. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO 2 nanotubes and other ordered oxide nanostructures, Small, 8 (2012) 3073-3103. 

  5. K. Hashimoto, H. Irie, A. Fujishima, TiO 2 photocatalysis: A historical overview and future prospects, J. Appl. Phys., 44 (2005) 8269-8285. 

  6. M. Kim, N. Shin, J. Lee, K. Lee, Y. Kim, J. Choi, Photoelectrochemical water oxidation in anodic TiO 2 nanotubes array: Importance of mass transfer, Electrochem. commun., 132 (2021) 1-6. 

  7. Z. Zhang, M. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO 2 nanotube arrays for hydrogen generation, Int. J. Hydrog. Energy, 35 (2010) 8528-8535. 

  8. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114 (2014) 9385-9454. 

  9. Y. Divyasri, N. Reddy, K. Lee, M. Sakar, V. Rao, V. Venkatramu, M. Shankar, N. Reddy, Optimization of N doping in TiO 2 nanotubes for the enhanced solar light mediated photocatalytic H 2 production and dye degradation, Environ. Pollut., 269 (2021) 116170. 

  10. J. Cai, J. Shen, X. Zhang, Y. Ng, J. Huang, W. Guo, C. Lin, Y. Lai, Light-driven sustainable hydrogen production utilizing TiO 2 Nanostructures: A review, Small Methods, 3 (2019) 1800184. 

  11. J. Yoo, K. Lee, TiO 2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications, Curr. Opin. Colloid Interface Sci., 63 (2023) 1-13. 

  12. H. Yoo, M. Kim, Y. Kim, K. Lee, J. Choi, Catalyst-doped anodic TiO 2 nanotubes: binder-free electrodes for (photo) electrochemical reactions, Catalysts, 8 (2018) 1-25. 

  13. D. Regonini, C . Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO 2 nanotubes, Mater. Sci. Eng. R, 74 (2013) 377-406. 

  14. J. Lee, H. Choi, M. Kim, Y. Lee, K. Lee, Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte, Appl. Chem. Eng., 31 (2020) 215-219. 

  15. K. Lee, Principle of anodic TiO 2 nanotube formations, Appl. Chem. Eng., 28 (2017) 601-606. 

  16. P. Roy, D. Kim, K. Lee, E. Spieckerb, P. Schmuki, TiO 2 nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2 (2010) 45-59. 

  17. M. Zare, S. Solaymani, A. Shafiekhani, S. Kulesza, S. Talu, M. Bramowicz, Evolution of rough-surface geometry and crystalline structures of aligned TiO 2 nanotubes for photoelectrochemical water splitting, Sci. Rep., 8 (2018) 10870. 

  18. M. Gea, C. Caoa, J. Huang, S. Li, S. Zhang, S. Deng, Q. Li, K. Zhang, Y. Lai, Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO 2 nanotube arrays: A review, Nanotechnol. Rev., 5 (2016) 75-112. 

  19. P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Improved efficiency of TiO 2 nanotubes in dye sensitized solar cells by decoration with TiO 2 nanoparticles, Electrochem. commun., 11 (2009) 1001-1004. 

  20. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO 2 films, Sci. Rep., 4 (2014) 4043. 

  21. G. Cha, P. Schmuki, M. Altomare, Freestanding membranes to study the optical properties of anodic TiO 2 nanotube layers, Chem. Asian J., 11 (2016) 789-797. 

  22. G. Cha, M. Altomare, N. Nguyen, N. Taccardi, K. Lee, P. Schmuki, Double-side co-catalytic activation of anodic TiO 2 nanotube membranes with sputter-coated Pt for photocatalytic H 2 generation from water/methanol mixtures, Chem. Asian J., 12 (2017) 314-323. 

  23. C. Adan, J. Marugan, E. Sanchez, C. Pablos, R. Grieken, Understanding the effect of morphology on the photocatalytic activity of TiO 2 nanotube array electrodes, Electrochim. Acta, 191 (2016) 521-529. 

  24. N. Denisov, J. Yoo, P. Schmuki, Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO 2 nanotubes, Electrochim. Acta, 319 (2019) 61-71. 

  25. T. Kim, S. Patil, K. Lee, Nanospaceconfined worm-like BiVO 4 in TiO 2 space nanotubes (SPNTs) for photoelectrochemical hydrogen production, Electrochim. Acta, 432 (2022) 141213. 

  26. X. Zhou, N. Denisov, G. Cha, I. Hwang, P. Schmuki, Photoelectrochemical performance of TiO 2 photoanodes: Nanotube versus nanoflake electrodes, Electrochem. commun., 124 (2021) 106937. 

  27. R. Beranek, J. Macak, M. Gartner, K. Meyer, P. Schumuki, Enhanced visible light photocurrent generation at surface-modified TiO 2 nanotubes, Electrochim. Acta, 54 (2009) 2640-2646. 

  28. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. A. Deyab, Y. Lai, Onedimensional TiO 2 nanotube photocatalysts for solar water splitting, Adv. Sci., 4 (2017) 1600152. 

  29. C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, TiO 2 nanotube arrays: Influence of tube length on the photocatalytic degradation of paraquat, Appl. Catal. B, 194 (2016) 1-6. 

  30. P. Makula, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra, J. Phys. Chem. Lett., 9 (2018) 6814-6817. 

  31. S. Kurian, H. Seo, H. Jeon, Significant enhancement in visible light absorption of TiO 2 nanotube arrays by surface band gap tuning, J. Phys. Chem. C, 117 (2013) 16811-16819. 

  32. K. Nakata, A. Fujishima, TiO 2 photocatalysis: Design and applications, J. Photochem. Photobiol. C, 13 (2012) 169-189. 

  33. A.P. Torane, A.B. Ubale, K.G. Kanade, P.K. Pagare, Photocatalytic dye degradation study of TiO 2 material, Mater. Today, 43 (2021) 2738-2741. 

  34. M.R.A. Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UVTiO 2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng., 7 (2019) 103248. 

  35. A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P. K. Khanna, Photodegradation of organic dyes based on anatase and rutile TiO 2 nanoparticles, RCS Adv., 6 (2016) 2746-2759. 

  36. C. Xu, G. P. Rangaiah, X. S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and Modeling Study, Ind. Eng. Chem. Res., 53 (2014) 14641-14649. 

  37. A. Umar, M. Rahman, S. aad, M. Salleh, M. Oyama, Preparation of grass-like TiO 2 nanostructure thin films: Effect of growth temperature, Appl. Surf. Sci., 270 (2013) 109-114. 

  38. W. Liao, J. Yang, H. Zhou, M. Murugananthan ,Y. Zhang, Electrochemically self-doped TiO 2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants, Electrochim. Acta, 136 (2014) 310-317. 

  39. D. Chen, Y. Cheng, N. Zhou , P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng , R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO 2 -based photocatalysts: A review, J. Clean. Prod., 268 (2020) 121725. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로