$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 및 국외 적용된 인공습지 내 Bibliometric Analysis을 이용한 탄소저장 및 탄소격리 능력 분석
Carbon Storage and Sequestration in Constructed Wetlands: A Systematic Review 원문보기

한국습지학회지 = Journal of wetlands research, v.25 no.2, 2023년, pp.132 - 144  

(공주대학교 스마트인프라공학과) ,  (공주대학교 스마트인프라공학과) ,  최혜선 (공주대학교 스마트인프라공학과) ,  전민수 (공주대학교 스마트인프라공학과) ,  김이형 (공주대학교 스마트인프라공학과)

초록
AI-Helper 아이콘AI-Helper

최근 인공습지(Constructed Wetlands, CWs)를 이용한 탄소격리에 대한 연구가 활발히 진행되고 있으나 인공습지는 미생물, 식생, 여재 등 소규모 생태계로 탄소흡수원과 탄소 공급원 두가지 기능을 수행하기에 탄소중립을 위한 인공습지의 기능이 확실하지 않다. 따라서 본 연구에서는 인공습지의 탄소격리에 대한 기능을 파악하고자 계량서지학 분석(Bibliometric analysis)을 통해 다양한 논문 및 보고서를 기반으로 다양하고 포괄적으로 검토를 수행하였다. 계량서지학 분석(Bibliometric analysis) 결과 인공습지의 기능은 질소를 초점에 두어 영양염류 제거 효과가 높은것으로 분석 되었으며, 인공습지는 토양 내 탄소함유량 및 탄소 격리는 토양 내 조성된 식생, 조성연도 및 유입수 내 유기물 함량에 따라 다른것으로 나타났다. 인공습지 내 적용되어진 식생 중 부들과(Typha)가 많이 적용되었으며, 탄소격리율에 기여도가 높은것으로 분석되었다. 목본류는 관목류에 비해 상대적으로 탄소격리율이 높아 인공습지 설계시 단일식생보다는 목본류와 관목류의 복합적으로 조성하여 인공습지 내 탄소격리율과 기후변화를 완화하는데 기여할 것으로 분석되었다.

Abstract AI-Helper 아이콘AI-Helper

The use of constructed wetlands (CWs) to sequester carbon has been a topic of interest in recent studies. However, CWs have been found to be both carbon sinks and carbon sources, thus leaving uncertainties about their role in carbon neutrality initiatives. To address the uncertainties, a bibliometri...

주제어

표/그림 (8)

참고문헌 (55)

  1. Ali, S., Khan, S. M., Ahmad, Z., Siddiq, Z., Ullah, A., Yoo, S., Han H., & Raposo, A. (2022). Carbon sequestration potential of different forest types in Pakistan and its role in regulating services for public health. Frontiers in Public Health, 10. https://doi.org/10.3389%2Ffpubh.2022.1064586. 

  2. Bansal, S., Lishawa, S. C., Newman, S., Tangen, B. A., Wilcox, D., Albert, D., Anteau, M. J., Chimney, M. J., Cressey, R. L., DeKeyser, E., Elgersma, K. J., Finkelstein, S. A., Freeland, J., Grosshans, R., Klug, P. E., Larkin, D. J., Lawrence, B. A., Linz, G., Marburger, J., ... Windham-Myers, L. (2019). Typha (cattail) invasion in North American wetlands: Biology, regional problems, impacts, ecosystem services, and Management. Wetlands, 39(4), 645-684. https://doi.org/10.1007/s13157-019-01174-7. 

  3. Bolton, K. & Greenway, M. (1997). A feasibility study of trees for use in constructed wetlands in Subtropical Australia. Water Science and Technology, 35(5). https://doi.org/10.1016/s0273-1223(97)00075-9. 

  4. BP p.l.c. (2023). bp Energy Outlook 2023 edition. 

  5. Breucker P., Cointet J., Hannud Abdo A., Orsal G., de Quatrebarbes C., Duong T., Martinez C., Ospina Delgado J.P., Medina Zuluaga L.D., Gomez Pena D.F., Sanchez Castano T.A., Marques da Costa J., Laglil H., Villard L., Barbier M. (2016). CorTexT Manager (version v2). URL: https://docs.cortext.net. 

  6. Cao, Q., Wang, H., Zhang, Y., Lal, R., Wang, R., Ge, X., & Liu, J. (2017). Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06035-z. 

  7. Cao, Q., Wang, R., Zhang, H., Ge, X., & Liu, J. (2015). Distribution of organic carbon in the sediments of Xinxue River and the Xinxue River Constructed Wetland, China. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0134713. 

  8. Cuellar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. In Journal of CO2 Utilization (Vol. 9, pp. 82-102). Elsevier Ltd. https://doi.org/10.1016/j.jcou.2014.12.001. 

  9. da Silva, Diogo Andre Pinheiro, Matos, M. P., Marques, M. V. A., de Matos, A. T., & de Alencar Neves, T. (2022). Kinetics and mineralization fraction of organic matter from sewage sludge mixed with soil under controlled laboratory conditions. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25121-5 

  10. Dalsgaard, J., von Ahnen, M., & Pedersen, P. B. (2021). Nutrient removal in a slow-flowing constructed wetland treating aquaculture effluent. Aquaculture Environment Interactions, 13, 363-376. https://doi.org/10.3354/aei00411. 

  11. Darmawan, A. A., Ariyanto, D. P., Basuki, T. M., Syamsiyah, J., & Dewi, W. S. (2022). Biomass accumulation and carbon sequestration potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas, 23(10), 5093-5100. https://doi.org/10.13057/biodiv/d231016. 

  12. Deverel, S. J., Ingrum, T., Lucero, C., & Drexler, J. Z. (2014). Impounded marshes on subsided islands:: Simulated vertical accretion, processes, and effects, Sacramento-San Joaquin Delta, CA USA. San Francisco Estuary and Watershed Science, 12(2), 1-23. https://doi.org/10.15447/sfews.2014v12iss2art5. 

  13. Ding, Y., Wang, Y., Gu, X., Peng, Y., Sun, S., & He, S. (2023). Salinity effect on denitrification efficiency with reed biomass addition in salt marsh wetlands. Bioresource Technology, 371. https://doi.org/10.1016/j.biortech.2023.128597. 

  14. Dong, W., Shu, J., He, P., Ma, G., & Dong, M. (2012). Study on the carbon storage and fixation of Phramites Autralis in Baiyangdian Demonstration Area. Procedia Environmental Sciences, 13, 324-330. https://doi.org/10.1016/j.proenv.2012.01.031. 

  15. Du, C., & Gao, Y. (2020). Opposite patterns of soil organic and inorganic carbon along a climate gradient in the alpine steppe of northern Tibetan Plateau. CATENA, 186, 104366. https://doi.org/10.1016/j.catena.2019.104366. 

  16. Gur, T. M. (2022). Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. In Progress in Energy and Combustion Science (Vol. 89). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2021.100965. 

  17. Hang, Q., Wang, H., He, Z., Dong, W., Chu, Z., Ling, Y., Yan, G., Chang, Y., & Li, C. (2020). Hydrilla Verticillata-sulfur-based heterotrophic and autotrophic denitrification process for nitrate-rich agricultural runoff treatment. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051574. 

  18. Harpenslager, S. F., Overbeek, C. C., van Zuidam, J. P., Roelofs, J. G. M., Kosten, S., & Lamers, L. P. M. (2018). Peat capping: Natural capping of wet landfills by peat formation. Ecological Engineering, 114, 146-153. https://doi.org/10.1016/j.ecoleng.2017.04.040. 

  19. Helfter, C., Gondwe, M., Murray-Hudson, M., Makati, A., & Skiba, U. (2022). From sink to source: High inter-annual variability in the carbon budget of a Southern African wetland. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2215). https://doi.org/10.1098/rsta.2021.0148. 

  20. Hernes, P. J., Miller, R. L., Dyda, R. Y., & Bergamaschi, B. A. (2020). Vegetation vs. Anoxic Controls on Degradation of Plant Litter in a Restored Wetland. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.564603. 

  21. International Energy Agency. (2020). Global Energy Review 2020. www.iea.org/corrigenda. 

  22. Jamwal, P., & Shirin, S. (2021). Impact of microbial activity on the performance of planted and unplanted wetland at laboratory scale. Water Practice and Technology, 16(2), 472-489. https://doi.org/10.2166/wpt.2021.017. 

  23. Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, A. (2010). Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands, 30(1), 111-124. https://doi.org/10.1007/s13157-009-0003-4. 

  24. Lu, W., Yang, S., Chen, L., Wang, W., Du, X., Wang, C., Ma, Y., Lin, G., & Lin, G. (2014). Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0091238. 

  25. Lolu, A. J., Ahluwalia, A. S., Sidhu, M. C., Reshi, Z. A., & Mandotra, S. K. (2020). Carbon Sequestration and Storage by Wetlands: Implications in the Climate Change Scenario. In Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment (pp. 45-58). Springer Singapore. https://doi.org/10.1007/978-981-13-7665-8_4. 

  26. Malyan, S. K., Yadav, S., Sonkar, V., Goyal, V. C., Singh, O., & Singh, R. (2021). Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. In Water Environment Research (Vol. 93, Issue 10, pp. 1882-1909). John Wiley and Sons Inc. https://doi.org/10.1002/wer.1599. 

  27. Maynard, J. J., Dahlgren, R. A., & O'Geen, A. T. (2011). Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff. Biogeosciences, 8(11), 3391-3406. https://doi.org/10.5194/bg-8-3391-2011. 

  28. Maziarz, J., Vourlitis, G. L., & Kristan, W. (2019). Carbon and nitrogen storage of constructed and natural freshwater wetlands in southern California. Ecological Engineering: X, 2. https://doi.org/10.1016/j.ecoena.2019.100008. 

  29. Merriman, L. S., Hunt, W. F., & Bass, K. L. (2016). Development/ripening of ecosystems services in the first two growing seasons of a regional-scale constructed stormwater wetland on the coast of North Carolina. Ecological Engineering, 94, 393-405. https://doi.org/10.1016/j.ecoleng.2016.05.065. 

  30. Nihan, S. T. (2020). Karl Pearsons chi-square tests. Educational Research and Reviews, 15(9), 575-580. https://doi.org/10.5897/err2019.3817. 

  31. Overbeek, C. C., Harpenslager, S. F., van Zuidam, J. P., van Loon, E. E., Lamers, L. P. M., Soons, M. B., Admiraal, W., Verhoeven, J. T. A., Smolders, A. J. P., Roelofs, J. G. M., & van der Geest, H. G. (2020). Drivers of Vegetation Development, Biomass Production and the Initiation of Peat Formation in a Newly Constructed Wetland. Ecosystems, 23(5), 1019-1036. https://doi.org/10.1007/s10021-019-00454-x. 

  32. Priem, J., & Hemminger, B. H. (2010). Scientometrics 2.0: New metrics of scholarly impact on the social web. First Monday. https://doi.org/10.5210/fm.v15i7.2874. 

  33. Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6(3), 317-327. https://doi.org/10.1046/j.1365-2486.2000.00308.x. 

  34. Puttock, A., Graham, H. A., Carless, D., & Brazier, R. E. (2018). Sediment and nutrient storage in a beaver engineered wetland. Earth Surface Processes and Landforms, 43(11), 2358-2370. https://doi.org/10.1002/esp.4398. 

  35. Ramond, J. B., Welz, P. J., Le Roes-Hill, M., Tuffin, M. I., Burton, S. G., & Cowan, D. A. (2014). Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage. FEMS Microbiology Ecology, 87(3), 678-690. https://doi.org/10.1111/1574-6941.12255. 

  36. Reddy, K. R., Hu, J., Villapando, O., Bhomia, R. K., Vardanyan, L., & Osborne, T. (2021). Long-term accumulation of macro- and secondary elements in subtropical treatment wetlands. Ecosphere, 12(11). https://doi.org/10.1002/ecs2.3787. 

  37. Rodriguez-Loinaz, G., Amezaga, I., & Onaindia, M. (2013). Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain. Journal of Environmental Management, 120, 18-26. https://doi.org/10.1016/j.jenvman.2013.01.032. 

  38. Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessment of Carbon Sequestration Potential of Tree Species in Amity University Campus Noida. 52. https://doi.org/10.3390/iecf2020-08075. 

  39. Shiau, Y. J., Chen, Y. A., You, C. R., Lai, Y. C., & Lee, M. (2022). Compositions of sequestrated soil carbon in constructed wetlands of Taiwan. Science of the Total Environment, 805. https://doi.org/10.1016/j.scitotenv.2021.150290. 

  40. Silva, Diogo Andre P., Matos, A. T., & Matos, M. P. (2019). Mineralization of organic matter and productivity of tifton 85 grass (Cynodon spp.) in soil incorporated with stabilized sludge from a vertical flow constructed wetland. Journal of Water Sanitation and Hygiene for Development, 9(2), 309-318. https://doi.org/10.2166/washdev.2019.133. 

  41. Soosaar, K., Maddison, M., & Mander, u. (2009). Water quality and emission rates of greenhouse gases in a treatment reedbed. WIT Transactions on Ecology and the Environment, 125, 105-125. https://doi.org/10.2495/WRM090111. 

  42. Strickland, M. S., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Testing the functional significance of microbial community composition. Ecology, 90(2), 441-451. 

  43. Stumpner, E. B., Kraus, T. E. C., Liang, Y. L., Bachand, S. M., Horwath, W. R., & Bachand, P. A. M. (2018). Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants. Ecological Engineering, 111, 176-185. https://doi.org/10.1016/j.ecoleng.2017.10.016. 

  44. Sun, M., Tian, X., Zou, Y., & Jiang, M. (2019). Ecological aesthetic assessment of a rebuilt wetland restored from farmland and management implications for National Wetland Parks. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223661. 

  45. Vijay, M. V., Sudarsan, J. S., & Nithiyanantham, S. (2017). Sustainability of constructed wetlands in using biochar for treating wastewater. Rasayan Journal of Chemistry, 10(3), 1056-1061. https://doi.org/10.7324/RJC.2017.1031738. 

  46. Vymazal, J. (2022). The historical development of constructed wetlands for wastewater treatment. Land, 11(2), 174. https://doi.org/10.3390/land11020174. 

  47. Wang, C., Li, H., Cai, T., & Sun, X. (2021). Variation of soil carbon and nitrogen storage in a natural restoration chronosequence of reclaimed temperate marshes. Global Ecology and Conservation, 27, e01589. https://doi.org/10.1016/j.gecco.2021.e01589. 

  48. Were, D., Kansiime, F., Fetahi, T., Cooper, A., & Jjuuko, C. (2019). Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. In Earth Systems and Environment (Vol. 3, Issue 2, pp. 327-340). Springer. https://doi.org/10.1007/s41748-019-00094-0. 

  49. Wilberforce, T., Baroutaji, A., Soudan, B., Al-Alami, A. H., & Olabi, A. G. (2019). Outlook of carbon capture technology and challenges. Science of the Total Environment, 657, 56-72. https://doi.org/10.1016/j.scitotenv.2018.11.424. 

  50. Yang, R., Li, K., Fang, J., Quan, Q., Zhang, C., & Liu, J. (2020). The Invasion of Alternanthera philoxeroides Increased Soil Organic Carbon in a River and a Constructed Wetland With Different Mechanisms. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.574528. 

  51. Yoon, J., Kim, H., Nam, J. M., & Kim, J. G. (2011). Optimal environmental range for Juncus effusus, an important plant species in an endangered insect species (Nannopya pygmaea) habitat in Korea. Journal of Ecology and Field Biology, 34(2), 223-235. https://doi.org/10.5141/JEFB.2011.024. 

  52. Yu, B., Huang, J. C., Zhou, C., He, S., & Zhou, W. (2020). Selenium removal by clam shells and gravels amended with cattail and reed litter. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140661. 

  53. Zhang, Y., Dong, W., Yan, G., Wang, H., Wang, H., Chang, Y., Yu, S., Chu, Z., Ling, Y., & Li, C. (2022). Plant Carbon Sources for Denitrification Enhancement and Its Mechanism in Constructed Wetlands: A Review. In Sustainability (Switzerland) (Vol. 14, Issue 19). MDPI. https://doi.org/10.3390/su141912545. 

  54. Zhao, D., Dong, J., Ji, S., Huang, M., Quan, Q., & Liu, J. (2020). Effects of contemporary land use types and conversions from wetland to paddy field or dry land on soil organic carbon fractions. Sustainability, 12(5), 2094. https://doi.org/10.3390/su12052094. 

  55. Zubair, M., Yasin, G., Qazlbash, S. K., Ul Haq, A., Jamil, A., Yaseen, M., Rahman, S. U., & Guo, W. (2022). Carbon Sequestration by Native Tree Species around the Industrial Areas of Southern Punjab, Pakistan. Land, 11(9). https://doi.org/10.3390/land11091577. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로