$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

막 기반 마찰전기 나노 발전기: 총설
Membrane Based Triboelectric Nanogenerator: A Review 원문보기

멤브레인 = Membrane Journal, v.33 no.2, 2023년, pp.53 - 60  

라비아 카갛니 (연세대학교 언더우드학부 융합과학공학부 나노과학공학) ,  라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)

초록
AI-Helper 아이콘AI-Helper

기계적 에너지는 생물학 및 환경 시스템에서 트라이보 전기 나노제너레이터(TENG)로 얻을 수 있다. 웨어러블 전자제품에서 TENG는 진동 센서에 적용된 인간의 움직임에서 생체역학적 에너지를 수확할 수 있다는 점에서 많은 의미를 지닌다. 웨어러블 TENG은 습기에 취약하며, 폴리테트라플루오로에틸렌(PTFE)은 이러한 용도에 사용되는 우수한 소수성 물질이다. 높은 전기 음성 불소 원자의 존재는 매우 낮은 표면 에너지로 이어진다. 동시에 미세다공막 표면에 전자를 효율적으로 포획함으로써 소자의 성능이 증가한다. PTFE에 비해 상대적으로 적은 플루오라이드 원자의 존재로 인해 폴리비닐리덴 플루오라이드(PVDF)에서도 유사한 거동을 보인다.

Abstract AI-Helper 아이콘AI-Helper

Mechanical energy can be harvested by triboelectric nanogenerators (TENG) from biological and environmental systems. In wearable electronics, TENG has a lot of significance as biomechanical energy can be harvested from the motion of humans, which is applied in vibrational sensors. Wearable TENG is p...

주제어

참고문헌 (25)

  1. F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, "Flexible triboelectric generator", Nano Energy, 1, 328 (2012). 

  2. Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors", ACS Nano, 7, 9533 (2013). 

  3. Y. Liu, Y. Zhu, J. Liu, Y. Zhang, J. Liu, and J. Zhai, "Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator", Nanoscale Res. Lett. 13, 191 (2018). 

  4. S. Yan, K. Dong, J. Lu, W. Song, and R. Xiao, "Amphiphobic triboelectric nanogenerators based on silica enhanced thermoplastic polymeric nanofiber membranes", Nanoscale, 12, 4527, (2020). 

  5. J. Qi, A. C. Wang, W. Yang, M. Zhang, C. Hou, Q. Zhang, Y. Li, and H. Wang, "Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator", Nano Energy, 67, 104206 (2020). 

  6. S. Yan, J. Lu, W. Song, and R. Xiao, "Flexible triboelectric nanogenerator based on cost-effective thermoplastic polymeric nanofiber membranes for body-motion energy harvesting with high humidity-resistance", Nano Energy, 48, 248 (2018). 

  7. K. Zhao, W. Sun, X. Zhang, J. Meng, M. Zhong, L. Qiang, M. J. Liu, B. N. Gu, C. C. Chung, M. Liu, F. Yu, and Y. L. Chueh, "High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS 2 composite membranes for wind energy scavenging application", Nano Energy, 91, 106649 (2022). 

  8. Q. Han, Z. Jiang, Y. Kong, and F. Chu, "Prebent membrane-based disk-type triboelectric nanogenerator applied to fault diagnosis in rotating machinery", IEEE ASME Trans Mechatron, 27, 4686 (2022). 

  9. C. Xu, F. Zeng, D. Wu, P. Wang, X. Yin, and B. Jia, "Nerve stimulation by triboelectric nanogenerator based on nanofibrous membrane for spinal cord injury", Front. Chem., 10, 941065 (2022). 

  10. Y. Yin, J. Wang, S. Zhao, W. Fan, X. Zhang, C. Zhang, Y. Xing, and C. Li, "Stretchable and tailorable triboelectric nanogenerator constructed by nanofibrous membrane for energy harvesting and self-powered biomechanical monitoring", Adv. Mater. Technol., 3, 1700370 (2018). 

  11. G. J. Choi, S. H. Baek, I. K. Park, "Synergetic enhancement of triboelectric nanogenerators' performance based on patterned membranes fabricated by phase-inversion process", Phys. Status Solidi A Appl. Mater. Sci., 218, 2000829 (2021). 

  12. T. Kamilya, P. K. Sarkar, and S. Acharya, "Unveiling peritoneum membrane for a robust triboelectric nanogenerator", ACS Omega 4, 17684 (2019). 

  13. Z. Qin, Y. Yin, W. Zhang, C. Li, and K. Pan, "Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes", ACS Appl. Mater. Interfaces 11, 12452 (2019). 

  14. D. L. Vu and K. K. Ahn, "Triboelectric enhancement of polyvinylidene fluoride membrane using magnetic nanoparticle for water-based energy harvesting", Polym., 14, 1547 (2022). 

  15. S. Chen, J. Jiang, F. Xu, and S. Gong, "Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction", Nano Energy, 61, 69 (2019). 

  16. M. R. Gokana, C. M. Wu, U. Reddicherla, and K. G. Motora, "Scalable preparation of ultrathin porous polyurethane membrane-based triboelectric nanogenerator for mechanical energy harvesting", Express Polym. Lett., 15 , 1019 (2021). 

  17. Y. Hu, Y. Shi, X. Cao, Y. Liu, S. Guo, and J. Shen, "Enhanced output and wearable performances of triboelectric nanogenerator based on ePTFE microporous membranes for motion monitoring", Nano Energy, 86, 106103 (2021). 

  18. S. Yan, Z. Zhang, X. Shi, Y. Xu, Y. Li, X. Wang, Q. Li, and L. S. Turng, "Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting", Int. J. Energy Res., 45, 11053 (2021). 

  19. P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A. A. Narasimulu, C. D. Montemagno, L. Yu, and J. Luo, "Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators", ACS Appl. Mater. Interfaces, 10, 5880 (2018). 

  20. T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu, S. Lee, D. Kim, M. Sharifuzzaman, S. M. S. Rana, and J. Y. Park, "Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications", Adv. Funct. Mater., 32, 2202145 (2022). 

  21. X. Pu, J. W. Zha, C. L. Zhao, S. B. Gong, J. F. Gao, and R. K. Y. Li, "Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators", Chem. Eng. J., 398, 125526 (2020). 

  22. Z. Sha, C. Boyer, G. Li, Y. Yu, F. M. Allioux, K. Kalantar-Zadeh, C. H. Wang, and J. Zhang, "Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance", Nano Energy, 92, 106713 (2022). 

  23. D. L. Vu, C. D. Le, and K. K. Ahn, "Functionalized graphene oxide/polyvinylidene fluoride composite membrane acting as a triboelectric layer for hydropower energy harvesting", Int. J. Energy Res., 46, 9549 (2022). 

  24. D. L. Vu, C. D. Le, C. P. Vo, and K. K. Ahn, "Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator", Compos Part B: Eng, 223, 109135 (2021). 

  25. D. L. Vu, C. P. Vo, C. D. Le, and K. K. Ahn, "Enhancing the output performance of fluid-based triboelectric nanogenerator by using poly(vinylidene fluoride-co-hexafluoropropylene)/ionic liquid nanoporous membrane", Int. J. Energy Res., 45, 8960 (2021). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로