$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 라이다 플랫폼과 딥러닝 모델에 따른 잣나무와 낙엽송의 분류정확도 비교 및 평가
Comparison and Evaluation of Classification Accuracy for Pinus koraiensis and Larix kaempferi based on LiDAR Platforms and Deep Learning Models 원문보기

한국산림과학회지 = Journal of korean society of forest science, v.112 no.2, 2023년, pp.195 - 208  

이용규 (강원대학교 산림경영학과) ,  이상진 (강원대학교 산림경영학과) ,  이정수 (강원대학교 산림경영학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 잣나무와 낙엽송을 대상으로 라이다로부터 취득된 3차원Point cloud data (PCD)를 이용하여 딥러닝 기반의 수종 분류 모델을 구축하고 분류정확도를 비교·평가하였다. 수종 분류 모델은 라이다 플랫폼(고정식과 이동식), Farthest point sampling (FPS) 기반의 다운샘플링 강도(1024개, 2048개, 4096개, 8192개), 딥러닝 모델(PointNet, PointNet++) 3가지 조건에 따라 총 16개의 모델을 구축하였다. 분류 정확도 평가 결과, 고정식 라이다는 다운샘플링 강도가 8192개인 PCD 자료에 PointNet++ 모델을 적용하였을 때 카파계수가 93.7%로 가장 높았으며, 이동식 라이다는 다운샘플링 강도가 2048개에 PointNet++을 적용하였을 때 카파계수가 96.9%로 가장 높았다. 또한, 플랫폼과 다운샘플링 강도가 동일한 경우 PointNet++이 PointNet보다 정확도가 높았다. 구축된 16개 모델의 오분류 사례는 첫 번째, 수종 간의 구조적인 특징이 유사한 개체목 두 번째, 경사지 또는 임도 주변에 위치하여 편심생장한 개체목 세 번째, 개체목 분할 시 수관부가 수직으로 분할된 개체목에 대해 발생하였다.

Abstract AI-Helper 아이콘AI-Helper

This study aimed to use three-dimensional point cloud data (PCD) obtained from Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS) to evaluate a deep learning-based species classification model for two tree species: Pinus koraiensis and Larix kaempferi. Sixteen models were constructed b...

Keyword

표/그림 (16)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서, 본 연구는 우리나라의 산림자원조사에 라이다를 적용하기 위해 PCD와 딥러닝 모델을 이용하여 수종정보를 추출하는 것을 목적으로 하였다. 이를 위해 본 연구에서는 우리나라 주요 침엽수종인 잣나무와 낙엽송에 대한 데이터를 수집하고, 플랫폼 별 다운샘플링 강도, 딥러닝 모델에 따른 수종 분류 결과를 도출함으로써 라이다를 이용한 산림자원조사에 수종 분류 모델을 적용하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (37)

  1. Axelsson, A., Lindberg, E. and Olsson, H. 2018. Exploring multispectral ALS data for tree species classification. Remote Sensing 10(2): 183. 

  2. Ballanti, L., Blesius, L., Hines, E. and Kruse, B. 2016. Tree species classification using hyperspectral imagery: a comparison of two classifiers. Remote Sensing 8(6): 445. 

  3. Briechle, S., Krzystek, P. and Vosselman, G. 2020. Classification of tree species and standing dead trees by fusing UAV-based lidar data and multispectral imagery in the 3D deep neural network PointNet++. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2: 203-210. 

  4. Chen, J., Chen, Y. and Liu, Z. 2021. Classification of typical tree species in laser point cloud based on deep learning. Remote Sensing 13(23): 4750. 

  5. Chen, S., Liu, H., Feng, Z., Shen, C. and Chen, P. 2019. Applicability of personal laser scanning in forestry inventory. PLoS One 14(2): e0211392. 

  6. Chen, Y., Liu, G., Xu, Y., Pan, P. and Xing, Y. 2021. PointNet++ network architecture with individual point level and global features on centroid for ALS point cloud classification. Remote Sensing 13(3): 472. 

  7. Del Perugia, B., Giannetti, F., Chirici, G. and Travaglini, D. 2019. Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning. Forests 10(3): 277. 

  8. Guan, H., Yu, Y., Ji, Z., Li, J. and Zhang, Q. 2015. Deep learning-based tree classification using mobile LiDAR data. Remote Sensing Letters 6(11): 864-873. 

  9. Hartley, R.J., Jayathunga, S., Massam, P.D., de Silva, D., Estarija, H.J., Davidson, S.J., Wuraola, A. and Pearse, G.D. 2022. Assessing the potential of backpack-mounted mobile laser scanning systems for tree phenotyping. Remote Sensing 14(14): 3344. 

  10. Jones, T.G., Coops, N.C. and Sharma, T. 2010. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of Environment 114(12): 2841-2852. 

  11. Ko, B.J., Park, S.I., Park, H.J. and Lee, S.H. 2022. Measurement of tree height and diameter using terrestrial laser scanner in coniferous forests. Journal of Environmental Science International 31(6): 479-490. 

  12. Ko, C.U., Lee, J.W., Kim, D. and Kang, J.T. 2022. The application of terrestrial light detection and ranging to forest resource inventories for timber yield and carbon sink estimation. Forests 13(12): 2087. 

  13. Korea Forest Service and Korea Forestry Promotion Institute. 2021. The 8th national forest inventory and forest health monitoring. -Field manual-. Seoul: Korea Forestry Promotion Institute. pp. 7-8. 

  14. Landis, J.R. and Koch, G.G. 1977. The measurement of observer agreement for categorical data. biometrics. pp. 159-174. 

  15. Liang, X. et al. 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 144: 137-179. 

  16. Lim, J.B., Kim, K.M., and Kim, M.K. 2019. The development of major tree species classification model using different satellite images and machine learning in Gwangneung area. Korean Journal of Remote Sensing 35(6): 1037-1052 

  17. Liu, B., Chen, S., Huang, H. and Tian, X. 2022. Tree Species Classification of backpack laser scanning data using the PointNet++ point cloud deep learning method. Remote Sensing 14(15): 3809. 

  18. Liu, B., Huang, H., Su, Y., Chen, S., Li, Z., Chen, E. and Tian, X. 2022. Tree species classification using ground-based LiDAR data by various point cloud deep learning methods. Remote Sensing 14(22): 5733. 

  19. Liu, B., Huang, H., Tian, X. and Ren, M. 2022. Individual tree species classification using the pointwise mlp-based point cloud deep learning method. Environmental Sciences Proceedings 22(1): 19. 

  20. Liu, M., Han, Z., Chen, Y., Liu, Z. and Han, Y. 2021. Tree species classification of LiDAR data based on 3D deep learning. Measurement 177: 109301. 

  21. Loudermilk, E.L., Pokswinski, S., Hawley, C.M., Maxwell, A., Gallagher, M.R., Skowronski, N.S., Hudak, A.T., Hoffman, C. and Hiers, J.K. 2023. Terrestrial laser scan metrics predict surface vegetation biomass and consumption in a frequently burned southeastern US ecosystem. bioRxiv, 2023-01. 

  22. Pu, R. and Landry, S. 2012. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sensing of Environment 124: 516-533. 

  23. Qi, C.R., Su, H., Mo, K. and Guibas, L.J. 2017. Pointnet: deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652-660. 

  24. Qi, C.R., Yi, L., Su, H. and Guibas, L.J. 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems 30: 5105-5114. 

  25. Ramadhani, F., Pullanagari, R., Kereszturi, G. and Procter, J. 2020. Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning. International Journal of Remote Sensing 41(21): 8428-8452. 

  26. Sakharova, E.K., Nurlyeva, D.D., Fedorova, A.A., Yakubov, A.R. and Kanev, A.I. 2022. Issues of tree species classification from LiDAR data using deep learning model. In advances in neural computation, machine learning, and cognitive research V: Selected papers from the XXIII international conference on neuroinformatics, Moscow, Russia. Springer International Publishing. pp. 319-324. 

  27. Shin, Y. H., Son, K. W. and Lee, D. C. 2022. Semantic segmentation and building extraction from airborne LiDAR data with multiple return using PointNet++. Applied Sciences 12(4): 1975. 

  28. Soydaner, D. 2020. A comparison of optimization algorithms for deep learning. International Journal of Pattern Recognition and Artificial Intelligence 34(13): 2052013. 

  29. Su, H., Maji, S., Kalogerakis, E. and Learned-Miller, E. 2015. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on computer vision. pp. 945-953. 

  30. Tao, S. et al. 2015. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS Journal of Photogrammetry and Remote Sensing 110: 66-76. 

  31. Wessel, M., Brandmeier, M. and Tiede, D. 2018. Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data. Remote Sensing 10(9): 1419. 

  32. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X. and Xiao, J. 2015. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1912-1920. 

  33. Xi, Z., Hopkinson, C., Rood, S.B. and Peddle, D.R. 2020. See the forest and the trees: effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 168: 1-16. 

  34. Yan, S., Jing, L. and Wang, H. 2021. A new individual tree species recognition method based on a convolutional neural network and high-spatial resolution remote sensing imagery. Remote Sensing 13(3): 479. 

  35. Zeybek, M. and Sanlioglu, I. 2019. Point cloud filtering on UAV based point cloud. Measurement 133: 99-111. 

  36. Zhang, F., Tian, X., Zhang, H., and Jiang, M. 2022. Estimation of Aboveground carbon density of forests using deep learning and multisource remote sensing. Remote Sensing 14(13): 3022. 

  37. Zhao, X., Guo, Q., Su, Y. and Xue, B. 2016. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing 117: 79-91. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로