$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석
A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations 원문보기

자원환경지질 = Economic and environmental geology, v.56 no.3, 2023년, pp.311 - 330  

전현정 (연세대학교 지구시스템과학과) ,  신형철 (연세대학교 지구시스템과학과) ,  윤태권 (연세대학교 지구시스템과학과) ,  한원식 (연세대학교 지구시스템과학과) ,  정재훈 (한국석유공사 글로벌기술센터) ,  곽재휘 (한국석유공사 글로벌기술센터)

초록
AI-Helper 아이콘AI-Helper

CO2 배출량 증가로 인한 지구온난화 심화에 대한 주요 대책으로 CO2를 포집하여 지중에 저장하는 이산화탄소 포집·저장(Carbon capture storage, CCS) 기술이 주목받고 있다. 최근 현무암의 거대한 체적, 높은 반응성, 풍부한 양이온 함량 등의 특성이 CO2 포획 및 저장 기작에 유리하게 작용한다는 사실이 부각되면서, 현무암층을 대상으로 하는 CO2 지중저장이 다양한 분야에서 연구되고 있다. 본 연구에서는 CO2 지중저장 기작, 현무암의 특성과 더불어 국외 연구 사례들을 조사 및 분석하여, 현무암 CO2 지중저장에 대한 타당성을 검토하였다. 조사한 사례들은 수행 방법을 기준으로 실험, 모델링, 현장 실증 연구로 분류하였다. 연구 사례별 실험 조건의 경우 온도는 20 ~ 250 ℃, 압력은 0.1 ~ 30 MPa, 암석-유체 간 반응 시간은 수 시간에서 4년까지 넓은 범위에서 진행되었다. 모델링 연구에서는 현무암 CO2 지중저장 후보지와 유사한 모델을 구축하여 CO2-유체 주입 전∙후 유체역학적 및 지화학적 요인들에 대한 변화를 살펴본 사례가 다수였다. 검토 결과, 현무암은 잠재 CO2 저장용량이 크고, CO2 광물화 반응이 빠르기 때문에 현무암 CO2 지중저장시 온도와 압력 및 지질구조와 같은 환경적인 제약이 적다. 현장 실증 사례인 CarbFix project, Wallula project가 성공적으로 수행되어 실증 수행가능성 또한 높게 평가되고 있다. 그러나 현무암 대상 CO2 지중저장에서 신중히 고려해야 할 점도 존재한다. 광물화 기작이 현무암의 조성, 주입 지역의 특성 등 여러 요인에 따라 결과가 상이하게 나타나고, 탄산염과 규산염 광물 등의 침전으로 인해 관정 주입성(injectivity) 저하가 발생할 수 있다. CO2 주입 시 저장층 내 압력 증가가 발생할 수 있으며 암석-CO2-유체 반응 과정에서 지중환경 오염의 위험성도 존재한다. 유체에 CO2를 용해시켜 주입하기 때문에 기존 방식과 다른 지중 모니터링 기술 또한 요구된다. 따라서, 현무암에서의 CO2 지중저장을 안정적이고 효율적으로 수행하기 위해서는 적합한 대상 지역을 선별하고, 해당 지역에 대한 여러 자료를 구축하여 이를 기반으로 한 다양한 실험, 모델링, 현장 실증 등의 체계적인 연구 수행이 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e.,...

주제어

참고문헌 (87)

  1. Adeoye, J.T. et al. (2017) Effect of transport limitations and fluid?properties on reaction products in fractures of unaltered and?serpentinized basalt exposed to high P CO 2 ? fluids. International?Journal of Greenhouse Gas Control, v.63, p.310-320. doi: 10.1016/j.ijggc.2017.06.003 

  2. Alfredsson, H.A. et al. (2013) The geology and water chemistry of?the Hellisheidi, SW-Iceland carbon storage site. International?Journal of Greenhouse Gas Control, v.12, p.399-418. doi: 10.1016/j.ijggc.2012.11.019 

  3. Aradottir, E.S., Sigurdardottir, H., Sigfusson, B. and Gunnlaugsson,?E. (2011) CarbFix: a CCS pilot project imitating and accelerating?natural CO 2 sequestration. Greenhouse Gases: Science and?Technology, v.1(2), p.105-118. doi: 10.1002/ghg.18 

  4. Bachu, S. and Bennion, B. (2008) Effects of in-situ conditions on?relative permeability characteristics of CO 2 -brine systems.?Environmental Geology, v.54, p.1707-1722. doi: 10.1007/s00254-007-0946-9 

  5. Brady, P.V. and Gislason, S.R. (1997) Seafloor weathering controls?on atmospheric CO 2 and global climate. Geochimica et?Cosmochimica Acta, v.61(5), p.965-973. doi: 10.1016/S0016-7037(96)00385-7 

  6. Callow, B., Falcon-Suarez, I., Ahmed, S. and Matter, J. (2018)?Assessing the carbon sequestration potential of basalt using X-ray?micro-CT and rock mechanics. International Journal of Greenhouse?Gas Control, v.70, p.146-156. doi: 10.1016/j.ijggc.2017.12.008 

  7. Chauhan, B.S., Mahajan, G., Randhawa, R.K., Singh, H. and Kang,?M.S. (2014) Global warming and its possible impact on?agriculture in India. Advances in agronomy, v.123, p.65-121. doi: 10.1016/B978-0-12-420225-2.00002-9 

  8. Cilek, V. (2009) Earth System: History and Natural Variability-Volume I, 1. EOLSS Publications. 

  9. Cinar, Y., Bukhteeva, O., Neal, P.R., Allinson, W.G. and Paterson, L.?(2008) CO 2 storage in low permeability formations, SPE?Symposium on Improved Oil Recovery. OnePetro. doi: 10.2118/114028-MS 

  10. Clark, D.E. et al. (2019) Experimental observations of CO 2 -water-basaltic glass interaction in a large column reactor experiment at?50℃. International Journal of Greenhouse Gas Control, v.89,?p.9-19. doi: 10.1016/j.ijggc.2019.07.007 

  11. Cox, K.G. (2013) The interpretation of igneous rocks. Springer?Science & Business Media. 

  12. De Silva, P.N.K. and Ranjith, P. (2012) A study of methodologies?for CO 2 storage capacity estimation of saline aquifers. Fuel, v.93,?p.13-27. doi: 10.1016/j.fuel.2011.07.004 

  13. Desmet, K. and Rossi-Hansberg, E. (2015) On the spatial economic?impact of global warming. Journal of Urban Economics, v.88,?p.16-37. doi: 10.1016/j.jue.2015.04.004 

  14. Doughty, C. (2008) Estimating plume volume for geologic storage?of CO 2 in saline aquifers. 0017-467X, Lawrence Berkeley?National Lab.(LBNL), Berkeley, CA (United States). 

  15. Erol, S., Akin, T., Baser, A., Saracoglu, O. and Akin, S. (2022)?Fluid-CO 2 injection impact in a geothermal reservoir: Evaluation?with 3-D reactive transport modeling. Geothermics, v.98,?p.102271. doi: 10.1016/j.geothermics.2021.102271 

  16. Esteves, A.F., Santos, F.M. and Pires, J.C.M. (2019) Carbon dioxide?as geothermal working fluid: An overview. Renewable and?Sustainable Energy Reviews, v.114, p.109331. doi: 10.1016/j.rser.2019.109331 

  17. Farooqui, M. et al. (2009) Evaluating volcanic reservoirs. Oilfield?Review, v.21(1), p.36-47. 

  18. Galeczka, I.M. et al. (2022) A pre-injection assessment of CO 2 and?H2S mineralization reactions at the Nesjavellir (Iceland)?geothermal storage site. International Journal of Greenhouse Gas?Control, v.115, p.103610. doi: 10.1016/j.ijggc.2022.103610 

  19. Giammar, D.E., Bruant Jr, R.G. and Peters, C.A. (2005) Forsterite?dissolution and magnesite precipitation at conditions relevant?for deep saline aquifer storage and sequestration of carbon?dioxide. Chemical Geology, v.217(3-4), p.257-276. doi: 10.1016/j.chemgeo.2004.12.013 

  20. Gill, R. and Fitton, G. (2022) Igneous rocks and processes: a?practical guide. John Wiley & Sons. 

  21. Gislason, S.R., Sigurdardottir, H., Aradottir, E.S. and Oelkers, E.H.?(2018) A brief history of CarbFix: Challenges and victories of?the project's pilot phase. Energy Procedia, v.146, p.103-114. doi: 10.1016/j.egypro.2018.07.014 

  22. Goldberg, D. et al. (2018) Geological storage of CO 2 in sub-seafloor?basalt: the CarbonSAFE pre-feasibility study offshore Washington?State and British Columbia. Energy Procedia, v.146, p.158-165.?doi: 10.1016/j.egypro.2018.07.020 

  23. Goldberg, D. and Slagle, A.L. (2009) A global assessment of deep-sea basalt sites for carbon sequestration. Energy Procedia, v.1(1),?p.3675-3682. doi: 10.1016/j.egypro.2009.02.165 

  24. Gysi, A.P. and Stefansson, A. (2012) CO2-water-basalt interaction. Low temperature experiments and implications for CO 2 sequestration?into basalts. Geochimica et Cosmochimica Acta, v.81, p.129-152. doi: 10.1016/j.gca.2011.12.012 

  25. Handogo, R., Mualim, A., Sutikno, J.P. and Altway, A. (2022)?Evaluation of CO 2 transport design via pipeline in the CCS?system with various distance combinations. ECS Transactions,?v.107(1), p.8593. doi: 10.1149/10701.8593ecst 

  26. Hellevang, H., Haile, B.G. and Tetteh, A. (2017) Experimental study?to better understand factors affecting the CO 2 mineral trapping?potential of basalt. Greenhouse Gases: Science and Technology,?v.7(1), p.143-157. doi: 10.1002/ghg.1619 

  27. Hellevang, H., Wolff-Boenisch, D. and Nooraiepour, M. (2019)?Kinetic control on the distribution of secondary precipitates?during CO 2 -basalt interactions. E3S Web of Conferences. doi: 10.1051/e3sconf/20199804006 

  28. Hong, G.-H., Park, C.-H. and Kim, H.-J. (2005) CO 2 Sequestration?in Geological Structures in the Maritime Area: A Preliminary?Review. Journal of the Korean Society for Marine Environment?& Energy, v.8(4), p.203-212. 

  29. Houghton, J. (2005) Global warming. Reports on progress in physics,?v.68(6), p.1343. 

  30. Ji, Y., Madhav, D. and Vandeginste, V. (2022) Kinetics of enhanced?magnesium carbonate formation for CO 2 storage via mineralization?at 200℃. International Journal of Greenhouse Gas Control,?v.121, p.103777. doi: 10.1016/j.ijggc.2022.103777 

  31. Kanakiya, S., Adam, L., Esteban, L., Rowe, M.C. and Shane, P.?(2017) Dissolution and secondary mineral precipitation in basalts?due to reactions with carbonic acid. Journal of Geophysical?Research: Solid Earth, v.122(6), p.4312-4327. doi: 10.1002/2017JB014019 

  32. Kelemen, P., Benson, S.M., Pilorge, H., Psarras, P. and Wilcox, J.?(2019) An overview of the status and challenges of CO 2 storage?in minerals and geological formations. Frontiers in Climate, v.1,?p.9. doi: 10.3389/fclim.2019.00009 

  33. Keskin, T., Nalakath Abubackar, H., Arslan, K. and Azbar, N.?(2019) Chapter 12 - Biohydrogen Production From Solid Wastes.?In: Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C.,?Larroche, C. (Eds.), Biohydrogen (Second Edition). Elsevier, pp.?321-346. DOI:https://doi.org/10.1016/B978-0-444-64203-5.00012-5 

  34. Kim, K., Ahn, J., Lee, Y. and Choi, J. (2021) CCUS Deep?Investment Analysis Report, Korea Institute of Energy Research. 

  35. Kneafsey, T.J. and Pruess, K. (2010) Laboratory flow experiments?for visualizing carbon dioxide-induced, density-driven brine?convection. Transport in porous media, v.82(1), p.123-139. doi: 10.1007/s11242-009-9482-2 

  36. Krevor, S.C., Pini, R., Li, B. and Benson, S.M. (2011) Capillary?heterogeneity trapping of CO 2 in a sandstone rock at reservoir?conditions. Geophysical Research Letters, v.38(15). doi: 10.1029/2011GL048239 

  37. Kumar, A., Shrivastava, J. and Pathak, V. (2017) Mineral carbonation?reactions under water-saturated, hydrothermal-like conditions and?numerical simulations of CO 2 sequestration in tholeiitic basalt of the?Eastern Deccan Volcanic Province, India. Applied Geochemistry,?v.84, p.87-104. doi: 10.1016/j.apgeochem.2017.05.021 

  38. Li, S., Wang, P., Wang, Z., Cheng, H. and Zhang, K. (2023) Strategy?to enhance geological CO 2 storage capacity in saline aquifer.?Geophysical Research Letters, v.50(3), p.e2022GL101431. doi: 10.1029/2022GL101431 

  39. Liu, D., Agarwal, R., Li, Y. and Yang, S. (2019) Reactive transport?modeling of mineral carbonation in unaltered and altered basalts?during CO 2 sequestration. International Journal of Greenhouse?Gas Control, v.85, p.109-120. doi: 10.1016/j.ijggc.2019.04.006 

  40. Liu, D., Agarwal, R., Liu, F., Yang, S. and Li, Y. (2022) Modeling?and assessment of CO 2 geological storage in the Eastern Deccan?Basalt of India. Environmental Science and Pollution Research,?v.29(56), p.85465-85481. doi: 10.1007/s11356-022-21757-y 

  41. Liu, H., Consoli, C. and Zapantis, A. (2018) Overview of Carbon?Capture and Storage (CCS) facilities globally. 14th Greenhouse?Gas Control Technologies Conference Melbourne 21-26 October?2018 (GHGT-14). 

  42. Marieni, C., Henstock, T.J. and Teagle, D.A. (2013) Geological?storage of CO 2 within the oceanic crust by gravitational trapping.?Geophysical Research Letters, v.40(23), p.6219-6224. doi: 10.1002/2013GL058220 

  43. Marieni, C., Matter, J.M. and Teagle, D.A. (2020) Experimental?study on mafic rock dissolution rates within CO 2 -seawater-rock?systems. Geochimica et Cosmochimica Acta, v.272, p.259-275.?doi: 10.1016/j.gca.2020.01.004 

  44. Marieni, C., Voigt, M., Clark, D.E., Gislason, S.R. and Oelkers, E.H.?(2021) Mineralization potential of water-dissolved CO 2 and H2S?injected into basalts as function of temperature: Freshwater versus?Seawater. International Journal of Greenhouse Gas Control, v.109,?p.103357. doi: 10.1016/j.ijggc.2021.103357 

  45. Matter, J.M. et al. (2011) The CarbFix Pilot Project-storing carbon?dioxide in basalt. Energy Procedia, v.4, p.5579-5585. doi: 10.1016/j.egypro.2011.02.546 

  46. Matter, J.M. et al. (2016) Rapid carbon mineralization for permanent?disposal of anthropogenic carbon dioxide emissions. Science,?352(6291), p.1312-1314. doi: 10.1126/science.aad8132 

  47. McGrail, B.P., Ho, A.M., Reidel, S.P. and Schaef, H.T. (2003) Use?and features of basalt formations for geologic sequestration.?Greenhouse Gas Control Technologies-6th International Conference.?Elsevier, pp. 1637-1640. doi: 10.1016/B978-008044276-1/50264-6 

  48. McGrail, B.P., Schaef, H.T., Glezakou, V.-A., Dang, L.X. and?Owen, A.T. (2009) Water reactivity in the liquid and supercritical?CO 2 phase: Has half the story been neglected? Energy Procedia,?v.1(1), p.3415-3419. doi: 10.1016/j.egypro.2009.02.131 

  49. McGrail, B.P., Spane, F.A., Amonette, J.E., Thompson, C. and?Brown, C.F. (2014) Injection and monitoring at the Wallula?basalt pilot project. Energy Procedia, v.63, p.2939-2948. doi: 10.1016/j.egypro.2014.11.316 

  50. Menefee, A.H., Li, P., Giammar, D.E. and Ellis, B.R. (2017) Roles?of transport limitations and mineral heterogeneity in carbonation?of fractured basalts. Environmental Science & Technology,?v.51(16), p.9352-9362. doi: 10.1021/acs.est.7b00326 

  51. Moune, S., Gauthier, P.-J., Gislason, S.R. and Sigmarsson, O.?(2006) Trace element degassing and enrichment in the eruptive?plume of the 2000 eruption of Hekla volcano, Iceland. Geochimica?et Cosmochimica Acta, v.70(2), p.461-479. doi: 10.1016/j.gca.2005.09.011 

  52. Nakajima, T., Xue, Z., Chiyonobu, S. and Azuma, H. (2014)?Numerical simulation of CO 2 leakage along fault system for the?assessment of environmental impacts at CCS site. Energy?Procedia, v.63, p.3234-3241. doi: 10.1016/j.egypro.2014.11.350 

  53. Nalley, S. and LaRose, A. (2021) International Energy Outlook 2021?(IEO2021). Energy Information Administration (EIA) Washington,?DC, USA. 

  54. Page, B. et al. (2020) The Global Status of CCS 2020: Vital to?Achieve Net Zero. 

  55. Phukan, M., Vu, H.P. and Haese, R.R. (2021) Mineral dissolution?and precipitation reactions and their net balance controlled by?mineral surface area: an experimental study on the interactions?between continental flood basalts and CO 2 -saturated water at 80?bars and 60℃. Chemical Geology, v.559, p.119909. doi: 10.1016/j.chemgeo.2020.119909 

  56. Portner, H.-O. et al. (2022) Climate change 2022: Impacts, adaptation?and vulnerability. IPCC Sixth Assessment Report: 37-118. 

  57. Rassool, D., Consoli, C., Townsend, A. and Liu, H. (2020) Overview?of Organisations and Policies Supporting the Deployment of?Large-Scale CCS Facilities. Global CCS Institute: Washington,?DC, USA. 

  58. Ratouis, T.M. et al. (2022) Carbfix 2: A transport model of longterm CO 2 and H2S injection into basaltic rocks at Hellisheidi,?SW-Iceland. International Journal of Greenhouse Gas Control,?v.114, p.103586. doi: 10.1016/j.ijggc.2022.103586 

  59. Raza, A., Glatz, G., Gholami, R., Mahmoud, M. and Alafnan, S.?(2022) Carbon mineralization and geological storage of CO 2 in?basalt: Mechanisms and technical challenges. Earth-Science?Reviews, v.229, p.104036. doi: 10.1016/j.earscirev.2022.104036 

  60. Rosenbauer, R.J., Thomas, B., Bischoff, J.L. and Palandri, J. (2012)?Carbon sequestration via reaction with basaltic rocks: Geochemical?modeling and experimental results. Geochimica et Cosmochimica?Acta, v.89, p.116-133. doi: 10.1016/j.gca.2012.04.042 

  61. Sandalow, D. et al. (2021) Carbon Mineralization Roadmap Draft?October 2021. Lawrence Livermore National Lab.(LLNL),?Livermore, CA (United States). 

  62. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2009) Basalt-CO 2 -H 2 O interactions and variability in carbonate mineralization?rates. Energy Procedia, v.1(1), p.4899-4906. doi: 10.1016/j.egypro.2009.02.320 

  63. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2010) Carbonate?mineralization of volcanic province basalts. International Journal?of Greenhouse Gas Control, v.4(2), p.249-261. doi: 10.1016/j.ijggc.2009.10.009 

  64. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2011) Basalt reactivity?variability with reservoir depth in supercritical CO 2 and aqueous?phases. Energy Procedia, v.4, p.4977-4984. doi: 10.1016/j.egypro.2011.02.468 

  65. Seevam, P.N., Race, J.M., Downie, M.J. and Hopkins, P. (2008)?Transporting the next generation of CO 2 for carbon, capture and?storage: the impact of impurities on supercritical CO 2 pipelines.?International Pipeline Conference, pp. 39-51. doi: 10.1115/IPC2008-64063 

  66. Siddik, M., Islam, M., Zaman, A. and Hasan, M. (2021) Current?status and correlation of fossil fuels consumption and greenhouse?gas emissions. Int. J. Energy Environ. Econ, v.28, p.103-119. 

  67. Smith, R., Inomata, H. and Peters, C. (2013) Chapter 2 - Systems,?Devices and Processes. In: Smith, R., Inomata, H., Peters, C. (Eds.),?Supercritical Fluid Science and Technology. Elsevier, pp. 55-119. DOI:https://doi.org/10.1016/B978-0-444-52215-3.00002-7 

  68. Snaebjornsdottir, S.O., Gislason, S.R., Galeczka, I.M. and Oelkers,?E.H. (2018) Reaction path modelling of in-situ mineralisation of?CO 2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica?et Cosmochimica Acta, v.220, p.348-366. doi: 10.1016/j.gca.2017.09.053 

  69. Snaebjornsdottir, S.O. et al. (2017) The chemistry and saturation?states of subsurface fluids during the in situ mineralisation of?CO 2 and H 2 S at the CarbFix site in SW-Iceland. International?Journal of Greenhouse Gas Control, v.58, p.87-102. DOI:https://doi.org/10.1016/j.ijggc.2017.01.007 

  70. Snaebjornsdottir, S.O. et al. (2020) Carbon dioxide storage through?mineral carbonation. Nature Reviews Earth & Environment,?v.1(2), p.90-102. doi: 10.1038/s43017-019-0011-8 

  71. Stockmann, G., Wolff-Boenisch, D., Gislason, S. and Oelkers, E.?(2008) Dissolution of diopside and basaltic glass: the effect of?carbonate coating. Mineralogical Magazine, v.72(1), p.135-139.?doi: 10.1180/minmag.2008.072.1.135 

  72. Takaya, Y., Nakamura, K. and Kato, Y. (2013a) Geological,?geochemical and social-scientific assessment of basaltic aquifers?as potential storage sites for CO 2 . Geochemical Journal, v.47(4),?p.385-396. 

  73. Takaya, Y., Nakamura, K. and Kato, Y. (2013b) Geological,?geochemical and social-scientific assessment of basaltic aquifers?as potential storage sites for CO 2 . Geochemical Journal, v.47(4),?p.385-396. DOI:10.2343/geochemj.2.0255 

  74. Takaya, Y., Nakamura, K. and Kato, Y. (2015) Dissolution of altered?tuffaceous rocks under conditions relevant for CO 2 storage. Applied?Geochemistry, v.58, p.78-87. doi: 10.1016/j.apgeochem.2015.03.012 

  75. Torp, T.A. and Gale, J. (2004) Demonstrating storage of CO 2 in?geological reservoirs: The Sleipner and SACS projects. Energy,?v.29(9-10), p.1361-1369. doi: 10.1016/j.energy.2004.03.104 

  76. Utomo, G.P. and Gulec, N. (2021) Preliminary geochemical?investigation of a possible CO 2 injection in the Ungaran?geothermal field, Indonesia: equilibrium and kinetic modeling.?Greenhouse Gases: Science and Technology, v.11(1), p.3-18. doi: 10.1002/ghg.2037 

  77. Van Pham, T.H., Aagaard, P. and Hellevang, H. (2012) On the?potential for CO 2 mineral storage in continental flood basalts-PHREEQC batch- and 1D diffusion-reaction simulations.?Geochemical Transactions, v.13(1), p.1-12. doi: 10.1186/1467-4866-13-5 

  78. Voigt, M. et al. (2021) An experimental study of basalt-seawater-CO 2 interaction at 130℃. Geochimica et Cosmochimica Acta,?v.308, p.21-41. doi: 10.1016/j.gca.2021.05.056 

  79. White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S. and?Pennline, H.W. (2003) Separation and capture of CO 2 from large?stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. Journal of the Air & Waste?Management Association, v.53(6), p.645-715. doi: 10.1080/10473289.2003.10466206? 

  80. White, S.K. et al. (2020) Quantification of CO 2 mineralization at the?Wallula basalt pilot project. Environmental Science & Technology, v.54(22), p.14609-14616. doi: 10.1021/acs.est.0c05142 

  81. WMO (2022) 50: 50 Chance of Global Temperature Temporarily?Reaching 1.5 C Threshold in Next Five Years. 

  82. Wolff-Boenisch, D., Wenau, S., Gislason, S.R. and Oelkers, E.H.?(2011) Dissolution of basalts and peridotite in seawater, in the?presence of ligands, and CO 2 : Implications for mineral?sequestration of carbon dioxide. Geochimica et Cosmochimica?Acta, v.75(19), p.5510-5525. doi: 10.1016/j.gca.2011.07.004 

  83. Wu, H., Jayne, R.S., Bodnar, R.J. and Pollyea, R.M. (2021)?Simulation of CO 2 mineral trapping and permeability alteration?in fractured basalt: Implications for geologic carbon sequestration?in mafic reservoirs. International Journal of Greenhouse Gas?Control, v.109, p.103383. doi: 10.1016/j.ijggc.2021.103383 

  84. Xiong, W. et al. (2018) CO 2 mineral sequestration in naturally?porous basalt. Environmental Science & Technology Letters,?v.5(3), p.142-147. doi: 10.1021/acs.estlett.8b00047 

  85. Xiong, W. et al. (2017) CO 2 mineral trapping in fractured basalt.?International Journal of Greenhouse Gas Control, 66: 204-217.?DOI:https://doi.org/10.1016/j.ijggc.2017.10.003 

  86. Zhang, D. and Song, J. (2014) Mechanisms for geological carbon?sequestration. Procedia IUTAm, v.10, p.319-327. doi: 10.1016/j.piutam.2014.01.027 

  87. 윤영기, 양정화, 최윤석, 이제훈, 이상은 (2021) 2050 Carbon?Neutrality Scenarios. In: Secretariat, P.C.o.C.N.a.G.G. (Ed.).? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로