$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Isolation of Exopolysaccharide-Producing Lactic Acid Bacteria from Pa-Kimchi and Characterization of Exopolysaccharides 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.51 no.2, 2023년, pp.157 - 166  

Yun Ji Kang (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ,  Tae Jin Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ,  Min Jae Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ,  Ji Yeon Yoo (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ,  Jeong Hwan Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

Three lactic acid bacteria (LAB) producing exopolysaccharides (EPSs) were isolated from Pa (green onion)-kimchi, and identified as Weissella confusa (SKP 173), Weissella cibaria (SKP 182), and Leuconostoc citreum (SKP 281), respectively by 16S rRNA gene sequencing. The yields of EPS were 21.27, 18.5...

주제어

표/그림 (8)

참고문헌 (31)

  1. Mathur H, Beresford TP, Cotter PD. 2020. Health benefits of lactic?acid bacteria (LAB) fermentates. Nutrients 12: 1679. 

  2. De Filippis F, Pasolli E, Ercolini D. 2020. The food-gut axis: lactic?acid bacteria and their link to food, the gut microbiome and?human health. FEMS Microbiol. Rev. 44: 454-489. 

  3. Lee SJ, Jeon HS, Yoo JY, Kim JH. 2021. Some important metabolites produced by lactic acid bacteria from kimchi. Foods 10: 2148. 

  4. Hatti-Kaul R, Chen L, Dishisha T, El Enshasy H. 2018. Lactic acid?bacteria: from starter cultures to producers of chemicals. FEMS?Microbiol. Lett. 365: fny213. 

  5. Shiby VK, Mishra HN. 2013. Fermented milks and milk products?as functional foods -a review. Crit. Rev. Food Sci. Nutr. 53: 482-496. 

  6. Park KY, Jeong JK, Lee YE, Daily JW 3rd. 2014. Health benefits of?kimchi (Korean fermented vegetables) as a probiotic food. J. Med.?Food 17: 6-20. 

  7. Fadda S, Lopez C, Vignolo G. 2010. Role of lactic acid bacteria?during meat conditioning and fermentation: peptides generated?as sensorial and hygienic biomarkers. Meat Sci. 86: 66-79. 

  8. De Vuyst L, Degeest B. 1999. Exopolysaccharides from lactic acid?bacteria. Technological bottlenecks and practical solutions.?Macromol. Symp. 140: 31-41. 

  9. Angelin J, Kavitha M. 2020. Exopolysaccharides from probiotic?bacteria and their health potential. Int. J. Biolog. Macromol. 162:?853-865. 

  10. Kook SY, Lee Y, Jeong EC, Kim S. 2019. Immunomodulatory?effects of exopolysaccharides produced by Bacillus licheniformis?and Leuconostoc mesenteroides isolated from Korean kimchi. J.?Funct. Foods 54: 211-219. 

  11. Kim K, Lee G, Thanh HD, Kim JH, Konkit M, Yoon S, et al. 2018.?Exopolysaccharide from Lactobacillus plantarum LRCC5310?offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J. Dairy Sci. 101: 5702-5712. 

  12. Nicolescu CM, Bumbac M, Buruleanu CL, Stanescu SG, Georgescu?AA, Toma SM. 2023. Biopolymers produced by lactic acid bacteria: characterization and food application. Polymers 15: 1539. 

  13. Wang B, Song Q, Zhao F, Xiao H, Zhou Z, Han Y. 2019. Purification?and characterization of dextran produced by Leuconostoc pseudomesenteroides PC as a potential exopolysaccharide suitable for?food applications. Process Biochem. 87: 187-195. 

  14. Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH. 2017. Characterization of a glutamate decarboxylase (GAD) from Enterococcus?avium M5 isolated from jeotgal, a Korean fermented seafood.?J. Microbiol. Biotechnol. 27: 1216-1222. 

  15. Feng F, Zhou Q, Yang Y, Zhao F, Du R, Han Y, et al. 2018. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int. J. Biol.?Macromol. 113: 45-50. 

  16. Lee KW, Park JY, Jeong HR, Heo HJ, Han NS, Kim JH. 2012. Probiotic?properties of Weissella strains isolated from human faeces.?Anaerobe 18: 96-102. 

  17. Liu C, Lin Q, Gao Y, Ye L, Xing Y, Xi T. 2007. Characterization and?antitumor activity of a polysaccharide from Strongylocentrotus?nudus eggs. Carbohydr. Polym. 67: 313-318. 

  18. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle?of protein-dye binding. Anal. Biochem. 72: 248-254. 

  19. Lee SB, Rhee YK, Gu EJ, Kim DW, Jang GJ, Song SH, et al. 2017.?Mass-based metabolomic analysis of Lactobacillus sakei and its?growth media at different growth phases. J. Microbiol. Biotechnol.?27: 925-932. 

  20. Kim UJ, Chang HC. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi.?Microbiol. Biotechnol. Lett. 34: 196-203. 

  21. Saleena LAK, Chandran D, Rayirath G, Shanavas A, Rajalingam S,?Vishvanathan M, et al. 2022. Development of low-calorie functional yoghurt by incorporating mannitol producing lactic acid?bacteria (Leuconostoc pseudomesenteroides) in the standard?yoghurt culture. J. Pure. Appl. Microbiol. 16: 729-736. 

  22. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud?Simeon M, et al. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agric.?Food. Chem. 57: 10889-10897. 

  23. Yang Y, Feng F, Zhou Q, Zhao F, Du R, Zhou Z, et al. 2019. Isolation,?purification, and characterization of exopolysaccharide produced by Leuconostoc citreum N21 from dried milk cake. Trans.?Tianjin Univ. 25: 161-168. 

  24. Gu JJ, Ha YJ, Yoo SK. 2015. Isolation and characterization of dextrans produced by Leuconostoc sp. strain JYY4 from fermented?kimchi. J. Korean Appl. Sci. Technol. 32: 758-766. 

  25. Maina NH, Virkki L, Pynnonen H, Maaheimo H, Tenkanen M. 2011. Structural analysis of enzyme-resistant isomaltooligosaccharides reveals the elongation of α-(1→3)-linked branches in?Weissella confusa dextran. Biomacromolecules 12: 409-418. 

  26. Yim JH, Kim SJ, Aan SH, Lee HK. 2004. Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the?marine bacterium Hahella chejuensis. Biotechnol. Bioprocess. Eng.?9: 405-413. 

  27. Miao M, Bai A, Jiang B, Song Y, Cui SW, Zhang T. 2014. Characterisation of a novel water-soluble polysaccharide from Leuconostoc?citreum SK24. 002. Food. Hydrocoll. 36: 265-272. 

  28. Ahmed RZ, Siddiqui K, Arman M, Ahmed N. 2012. Characterization of high molecular weight dextran produced by Weissella?cibaria CMGDEX3. Carbohydr. Polym. 90: 441-446. 

  29. Zhao X, Liang Q. 2022. EPS-producing Lactobacillus plantarum?MC5 as a compound starter improves rheology, texture, and?antioxidant activity of yogurt during storage. Foods 11: 1660. 

  30. Kareem AJ, Salman JAS. 2019. Production of dextran from locally?Lactobacillus spp. isolates. Rep. Biochem. Mol. Biol. 8: 287-300. 

  31. Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. 2021.?Lactic acid bacteria exopolysaccharides producers: a sustainable?tool for functional foods. Foods 10: 1653. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로