$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석
Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.34 no.3, 2023년, pp.283 - 291  

김동희 (광주과학기술원 에너지융합대학원) ,  정현승 (광주과학기술원 에너지융합대학원) ,  박찬호 (광주과학기술원 에너지융합대학원)

Abstract AI-Helper 아이콘AI-Helper

The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed ...

주제어

참고문헌 (27)

  1. T. M. Marteau, N. Chater, and E. E. Garnett, "Changing behaviour for net zero 2050", bmj, Vol. 375, 2021, pp. n2293,?doi: https://doi.org/10.1136/bmj.n2293. 

  2. R. Haider, Y. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. Yuan,?S. Song, and J. Zhang, "High temperature proton exchange?membrane fuel cells: progress in advanced materials and key?technologies", Chemical Society Reviews, Vol. 50, No. 2, 2021,?pp. 1138-1187, doi: https://doi.org/10.1039/D0CS00296H. 

  3. X. Zhang, D. Trieu, D. Zheng, W. Ji, H. Qu, T. Ding, D. Qiu,?and D. Qu, "Nafion/PTFE composite membranes for a high?temperature PEM fuel cell application", Industrial & Engineering Chemistry Research, Vol. 60, No. 30, 2021, pp. 11086-11094, doi: https://doi.org/10.1021/acs.iecr.1c01447. 

  4. Y. Wang, P. Sun, Z. Li, H. Guo, H. Pei, and X. Yin, "Construction of novel proton transport channels by triphosphonic?acid proton conductor-doped crosslinked mPBI-based high-temperature and low-humidity proton exchange membranes", ACS Sustainable Chemistry & Engineering, Vol. 9, No. 7, 2021, pp. 2861-2871, doi: https://doi.org/10.1021/acssuschemeng.0c08799. 

  5. M. Prokop, P. Capek, M. Vesely, M. Paidar, and K. Bouzek,?"High-temperature PEM fuel cell electrode catalyst layers?Part 2: experimental validation of its effective transport properties", Electrochimica Acta, Vol. 413, 2022, pp. 140121,?doi: https://doi.org/10.1016/j.electacta.2022.140121. 

  6. Y. Ira, Y. Bakhshan, and J. Khorshidimalahmadi, "Effect of?wettability heterogeneity and compression on liquid water?transport in gas diffusion layer coated with microporous layer of PEMFC", International Journal of Hydrogen Energy,?Vol. 46, No. 33, 2021, pp. 17397-17413, doi: https://doi.org/10.1016/j.ijhydene.2021.02.160. 

  7. M. Sarker, M. A. Rahman, F. Mojica, S. Mehrazi, W. J. M. Kort-Kamp, and P. Y. A. Chuang, "Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell", Journal of Power Sources, Vol. 509, pp. 230350,?doi: https://doi.org/10.1016/j.jpowsour.2021.230350. 

  8. J. Huang, Z. Li, B. Y. Liaw, and J. Zhang, "Graphical analysis?of electrochemical impedance spectroscopy data in Bode?and Nyquist representations", Journal of Power Sources, Vol.?309, 2016, pp. 82-98, doi: https://doi.org/10.1016/j.jpowsour.2016.01.073. 

  9. S. Dierickx, A. Weber, and E. Ivers-Tiffee, "How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells", Electrochimica Acta, Vol. 355, 20?20, pp. 136764, doi: https://doi.org/10.1016/j.electacta.2020.136764. 

  10. G. A. Cohen, D. Gelman, and Y. Tsur, "Development of a typical distribution function of relaxation times model for polymer electrolyte membrane fuel cells and quantifying the?resistance to proton conduction within the catalyst layer",?The Journal of Physical Chemistry C, Vol. 125, No. 22, 2021,?pp. 11867-11874, doi: https://doi.org/10.1021/acs.jpcc.1c03667. 

  11. D. Zhu, Y. Yang, and T. Ma, "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell?Stack by Distribution of Relaxation Times", Sustainability,?Vol. 14, No. 9, 2022, pp. 5677, doi: https://doi.org/10.3390/su14095677. 

  12. T. G. Bergmann and N. Schluter, "Introducing alternative algorithms for the determination of the distribution of relaxation times", ChemPhysChem, Vol. 23, No. 13, 2022, pp. e202200012, doi: https://doi.org/10.1002/cphc.202200012. 

  13. M. Heinzmann, A. Weber, and E. Ivers-Tiffee, "Advanced?impedance study of polymer electrolyte membrane single?cells by means of distribution of relaxation times", Journal?of Power Sources, Vol. 402, 2018, pp. 24-33, doi: https://doi.org/10.1016/j.jpowsour.2018.09.004. 

  14. T. Reshetenko and A. Kulikovsky, "Understanding the distribution of relaxation times of a low-Pt PEM fuel cell", Electrochimica Acta, Vol. 391, 2021, pp. 138954, doi: https://doi.org/10.1016/j.electacta.2021.138954. 

  15. A. Weiss, S. Schindler, S. Galbiati, M. A. Danzer, and R. Zeis,?"Distribution of relaxation times analysis of high-temperature pem fuel cell impedance spectra", Electrochimica Acta,?Vol. 230, 2017, pp. 391-398, doi: https://doi.org/10.1016/j.electacta.2017.02.011. 

  16. J. Liu, C. Yang, C. Liu, F. Wang, and Y. Song, "Design of pore?structure in gas diffusion layers for oxygen depolarized cathode and their effect on activity for oxygen reduction reaction", Industrial & Engineering Chemistry Research, Vol.?53, No. 14, 2014, pp. 5866-5872, doi: https://doi.org/10.1021/ie403975r. 

  17. S. Salari, M. Tam, C. McCague, J. Stumper, and M. Bahrami,?"The ex-situ and in-situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance", Journal of Power Sources,?Vol. 449, 2020, pp. 227479, doi: https://doi.org/10.1016/j.jpowsour.2019.227479. 

  18. H. Chun, D. H. Kim, H. S. Jung, and C. Pak, "Determinatio?n of optimum binder content in the catalyst layer with differ?e-nt GDL for anode of HT-PEMFC", Journal of Hydrogen a?nd New Energy, Vol. 33, No. 1, 2022, pp. 38-46, doi: https://doi.org/10.7316/KHNES.2022.33.1.38. 

  19. Y. Yin, R. Li, F. Bai, W. Zhu, Y. Qin, Y. Chang, J. Zhang, and?M. D. Guiver, "Ionomer migration within PEMFC catalyst?layers induced by humidity changes", Electrochemistry Co?-mmunications, Vol. 109, 2019, pp. 106590, doi: https://doi.org/10.1016/j.elecom.2019.106590. 

  20. G. Wang, L. Osmieri, A. G. Star, J. Pfeilsticker, and K. C. Neyerlin, "Elucidating the role of ionomer in the performance?of platinum group metal-free catalyst layer via in situ electrochemical diagnostics", Journal of The Electrochemical Society, Vol. 167, No. 4, 2020, pp. 044519, doi: https://doi.org/10.1149/1945-7111/ab7aa1. 

  21. R. Jinnouchi, K. Kudo, K. Kodama, N. Kitano, T. Suzuki, S.?Minami, K. Shinozaki, N. Hasegawa, and A. Shinohara, "The?role of oxygen-permeable ionomer for polymer electrolyte?fuel cells", Nature Communications, Vol. 12, 2021, pp. 4956,?doi: https://doi.org/10.1038/s41467-021-25301-3. 

  22. Y. H. Huang, Y. H. Hsu, and Y. T. Pan, "Fabrication of catalyst?layers with preferred mass and charge transport properties?through texture engineering", ACS Applied Energy Materials, Vol. 5, No. 3, 2022, pp. 2890-2897, doi: https://doi.org/10.1021/acsaem.1c03568. 

  23. H. Sun, H. Chen, and Y. Wan, "Mass transfer in the HT-PEM?fuel cell electrode", Energy Procedia, Vol. 61, 2014, pp. 1524-1527, doi: https://doi.org/10.1016/j.egypro.2014.12.161. 

  24. M. R. Gerhardt, L. M. Pant, J. C. Bui, A. R. Crothers, V. M.?Ehlinger, J. C. Fornaciari, J. Liu, and A. Z. Weber, "Method-practices and pitfalls in voltage breakdown analysis of electrochemical energy-conversion systems", Journal of the Electrochemical Society, Vol. 168, No. 7, 2021, pp. 074503, doi:?https://doi.org/10.1149/1945-7111/abf061. 

  25. J. Choi, J. Sim, H. Oh, and K. Min, "Resistance separation of?polymer electrolyte membrane fuel cell by polarization curve and electrochemical impedance spectroscopy", Energies,?Vol. 14, No. 5, 2021, pp. 1491, doi: https://doi.org/10.3390/en14051491. 

  26. Z. Zhao, M. D. Hossain, C. Xu, Z. Lu, Y. S. Liu, S. H. Hsieh,?I. Lee, W. Gao, J. Yang, B. V. Merinov, W. Xue, Z. Liu, J. Zhou,?Z. Luo, X. Pan, F. Zaera, J. Guo, X. Duan, W. A. Goddard III,?and Y. Huang, "Tailoring a three-phase microenvironment?for high-performance oxygen reduction reaction in proton?exchange membrane fuel cells", Matter, Vol. 3, No. 5, 2020,?pp. 1774-1790, doi: https://doi.org/10.1016/j.matt.2020.09.025. 

  27. H. Chun, D. H. Kim, H. S. Jung, J. Sim, and C. Pak, "Effects?of gas-diffusion layer properties on the performance of the?cathode for high-temperature polymer electrolyte membrane fuel cell", International Journal of Hydrogen Energy 2023 (epub ahead of print), doi: https://doi.org/10.1016/j.ijhydene.2023.03.416. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로