$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례
Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 원문보기

Journal of environmental science international = 한국환경과학회지, v.32 no.7, 2023년, pp.503 - 520  

최현식 (부산대학교 지구환경시스템학부) ,  전원배 (부산대학교 대기환경과학과) ,  김동진 (부산대학교 지구환경시스템학부) ,  양채영 (부산대학교 대기환경과학과) ,  문정혁 (부산대학교 지구환경시스템학부) ,  박재형 (부산대학교 지구환경시스템학부)

Abstract AI-Helper 아이콘AI-Helper

In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 4...

주제어

참고문헌 (49)

  1. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N, 2021, The community multiscale air quality (CMAQ) model versions 5.3 and 5.3. 1: system updates and evaluation, Geosci. Model Dev., 14, 2867-2897. 

  2. Barna, M., Lamb, B., 2000, Improving ozone modeling in regions of complex terrain using observational nudging in a prognostic meteorological model, Atmos. Environ., 34, 4889-4906. 

  3. Bowden, J. H., Otte, T. L., Nolte, C. G., Otte, M. J., 2012, Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling, J. Clim., 25, 2805-2823. 

  4. Busan Metropolitan City, 2019, Guidelines for Reducing particle matter, https://www.busan.go.kr/depart/cleanair02. 

  5. Busan Metropolitan City, 2023, 2040 Busan City Basic Plan, https://book.busan.go.kr/Viewer/8TM2BNFK821V. 

  6. Busan Metropolitan City Institute of Health and Environment, 2022, The Annual Report of Busan Metropolitan City 2021, https://book.busan.go.kr/Viewer/L4KZJRQNC2YF. 

  7. Busan Metropolitan City Institute of Health and Environment, 2023, The Annual Report of Busan Metropolitan City 2022, https://book.busan.go.kr/Viewer/F52FLJ7LE9F8. 

  8. Byun, D., Schere, K. L., 2006, Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77. 

  9. Chlebowska-Stys, A., Kobus, D., Zathey, M., Sowka, I., 2019, The impact of road transport on air quality in selected Polish cities, Ecol. Chem. Eng. A, 26, 19-36. 

  10. Choi, H. J., Lee, H. W., Jeon, W. B., Lee, S. H., 2012, The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing, Atmos. Environ., 46, 554-567. 

  11. Cox, W. M., Chu, S. H., 1996, Assessment of interannual ozone variation in urban areas from a climatological perspective, Atmos. Environ., 30, 2615-2625. 

  12. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Pagani, F., Solazzo, E., 2022, EDGAR v6.1 global air pollutant emissions. 

  13. Do, W. G., Jung, W. S., 2015, A Study on the characteristics of antecedent meteorologic conditions on high ozone days in Busan, J. Environ. Sci. Int., 24, 993-1001. 

  14. Do, W. G., Lee, H. W., Jung, W. S., 2007, A Numerical simulation of high ozone episode using OZIPR in Busan, J. Environ. Sci. Int., 16, 985-994. 

  15. Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J, 2010, Application of OMI observations to a space-based indicator of NO x and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213-2223. 

  16. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X., Zhao, C., 2008, Characterizations of ozone, NO x , and VOCs measured in Shanghai, China., Atmos. Environ., 42, 6873-6883. 

  17. Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L., Wang, X., 2012, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492. 

  18. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999-2049. 

  19. Jacob, D. J., Winner, D. A., 2009, Effect of climate change on air quality, Atmos. Environ., 43, 51-63. 

  20. Jeon, B. I., 2014, Characteristics of ozone concentration weekend effect in Busan area, J. Environ. Sci. Int., 23, 861-871. 

  21. Jeon, W., Choi, Y., Lee, H. W., Lee, S. H., Yoo, J. W., Park, J., Lee, H. J., 2015, A Quantitative analysis of grid nudging effect on each process of PM2.5 production in the Korean Peninsula, Atmos. Environ., 122, 763-774. 

  22. Jeon, W., Choi, Y., Souri, A. H., Roy, A., Diao, L., Pan, S., Lee, H. W., Lee, S. H., 2018, Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean, Sci. Total Environ., 613, 820-828. 

  23. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, J. Korean Soc. Atmos., 27, 30-40. 

  24. Jeon, W. B., Lee, S. H., Lee, H., Park, C., Kim, D. H., Park, S. Y., 2014, A Study on high ozone formation mechanism associated with change of NO x /VOCs ratio at a rural area in the Korean Peninsula, Atmos. Environ., 89, 10-21. 

  25. Jeong, J. P., Yi, S. M., Jung, S. H, Kim, M. J., Heo, J. B., 2015, Reduction plan by source of particle matters in Busan Metropolitan City. 

  26. Jeong, Y. M., Lee, H. W., Lee, S. H., Choi, H. J., Jeon, W. B., 2010, Numerical study on the impact of regional warming on the meterological field and ozone concentration over the South-Eastern part of the Korean peninsula, J. Environ. Sci. Int., 19, 1431- 1445. 

  27. Jeong, Y. M., Lee, S. H., Lee, H. W., Jeon, W. B., 2012, Numerical study on the process analysis of ozone production due to emissions reduction over the Seoul metropolitan area, J. Environ. Sci. Int., 21, 339-349. 

  28. Jung, W. S., Lee, H. W., Park, J. K., 2007, Analysis of local wind in Busan metropolitan area according to wind sector division-part III: Division of local wind sector over Busan, J. Environ. Sci. Int., 16, 311-321. 

  29. Kang, Y. H., Kim, Y. K., Hwang, M. K., Jeong, J. H., Kim, H., Kang, M. S., 2019, Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area, J. Environ. Sci. Int., 28, 169-182. 

  30. Kim, C. H., Lee, S. H., Jang, M., Chun, S., Kang, S., Ko, K. K., Lee, J. J., Lee, H. J., 2020, A Study on statistical parameters for the evaluation of regional air quality modeling results-Focused on fine dust modeling, J. Environ. Impact Assess., 29, 272-285. 

  31. Kim, T., Jeong, J. H., Kim, Y. K., 2016, Sensitivity analysis of the WRF model according to the impact of nudging for improvement of ozone prediction, J. Environ. Sci. Int., 25, 683-694. 

  32. Kleczek, M. A., Steeneveld, G. J., Holtslag, A. A., 2014, Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up, Bound.-Layer Meteor., 152, 213-243. 

  33. Korean Statistical Information Servicd (KOSIS), Busan Metropolitan City e-Local Index, https://kosis.kr/statHtml/statHtml.do?orgId101&tblIdDT_1YL0000&vw_cdMT_GTITLE02&list_id21&obj_var_idA&itm_id21&seqNo&conn_pathMT_GTITLE02&path%252FstatisticsList%252FstatisticsListIndex.do. 

  34. Mehdipour, V., Memarianfard, M., 2017, Application of support vector machine and gene expression programming on tropospheric ozone prognosticating for Tehran metropolitan, Civ. Eng, J., 3, 557-567. 

  35. Munoz-Esparza, D., Kosovic, B., 2018, Generation of inflow turbulence in large-eddy simulations of nonneutral atmospheric boundary layers with the cell perturbation method, Mon. Weather Rev., 146, 1889-1909. 

  36. National Institute of Environmental Research (NIER), 2022, 2021 NIER Annual Report, https://eng.nier.go.kr/NIER/cop/bbs/selectNoLoginBoardArticle.do. 

  37. National Air Emission Inventroy and Research Center (NAIR), 2022, 2019 National Air Pollutant Emissions Inventory, https://www.air.go.kr/eng/capss/emission/year.do?menuId190. 

  38. Pinto, J. O., Jensen, A. A., Jimenez, P. A., Hertneky, T., Munoz-Esparza, D., Dumont, A., Steiner, M, 2021, Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE, Earth Syst. Sci. Data, 13, 697-711. 

  39. Seinfeld, J. H., 1989, Urban air pollution: state of the science. Science, 243, 745-752. 

  40. Seinfeld, J. H., Pandis, S. N., 2016, Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, Inc., 1326. 

  41. Sillman, S., 1995, The use of NO y , H 2 O 2 , and HNO 3 as indicators for ozone-NO x -hydrocarbon sensitivity in urban locations, J. Geophys. Res.-Atmos., 100, 14175-14188. 

  42. Sillman, S., He, D., 2002, Some theoretical results concerning O 3 -NO x -VOC chemistry and NO x -VOC indicators, J. Geophys. Res.-Atmos., 107, ACH 26-21-ACH 26-15. 

  43. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., 2019, A Description of the advanced research WRF model version 4, National Center for Atmospheric Research: Boulder, CO, USA. 

  44. Tiwari, S., Dahiya, A., Kumar, N., 2015, Investigation into relationships among NO, NO 2 , NO x , O 3 , and CO at an urban background site in Delhi, India, Atmos. Res., 157, 119-126. 

  45. U.S. Environmental Protection Agency, 2006, Air quality criteria for ozone and related photochemical oxidants, Office, NC f. EA-R., Ed. US EPA: Research Triangle Park, 2, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20060228_ord_epa-600_r-05-004bf_ozone_criteria_document_vol-2.pdf. 

  46. Vivanco, M. G., de Fatima Andrade, M., 2006, Validation of the emission inventory in the Sao Paulo Metropolitan Area of Brazil, based on ambient concentrations ratios of CO, NMOG and NO x and on a photochemical model, Atmos. Environ., 40, 1189-1198. 

  47. Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., Cheng, N., 2019, Characteristics of one-year observation of VOCs, NO x , and O 3 at an urban site in Wuhan, China., J. Environ. Sci., 79, 297-310. 

  48. Yin, H., Liu, C., Hu, Q., Liu, T., Wang, S., Gao, M., Xu, S., Zhang, C., Su, W., 2021, Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM 2.5 and O 3 in Wuhan, China., Environ. Pollut., 289, 117899. 

  49. Zoran, M. A., Savastru, R. S., Savastru, D. M., Tautan, M. N., 2020, Assessing the relationship between ground levels of ozone (O 3 ) and nitrogen dioxide (NO 2 ) with coronavirus (COVID-19) in Milan, Italy, Sci. Total Environ., 740, 140005. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로