$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정
Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.32 no.3, 2023년, pp.181 - 189  

이승헌 (국립공주대학교 농공학과) ,  김락우 (국립공주대학교 스마트팜공학과) ,  김찬민 (국립공주대학교 스마트팜공학과) ,  석희웅 (국립공주대학교 스마트팜공학과) ,  윤성욱 (농촌진흥청 국립농업과학원 농업공학부)

초록
AI-Helper 아이콘AI-Helper

수소는 다양한 신재생에너지 중 환경친화적인 에너지로 각광받고 있지만 농업에 적용된 사례는 드물다. 본 연구는 수소연료전지 삼중 열병합 시스템을 온실에 적용하여 에너지를 절약하고 온실가스를 줄이고자 한다. 이 시스템은 배출된 열을 회수하면서 수소로부터 난방, 냉각 및 전기를 생산할 수 있다. 수소 연료 전지 삼중 열 병합 시스템을 온실에 적용하기 위해서는 온실의 냉난방 부하 분석이 필요하다. 이를 위해서는 온실의 형태, 냉난방 시스템, 작물 등을 고려해야 한다. 따라서 본 연구에서는 건물 에너지 시뮬레이션(BES)을 활용하여 냉난방 부하를 추정하고자 한다. 전주지역의 토마토를 재배하는 반밀폐형 온실을 대상으로 2012년부터 2021년까지의 기상데이터를 수집하여 분석했다. 온실 설계도를 참고하여 피복재와 골조를 모델화하여 작물 에너지와 토양 에너지 교환을 실시했다. 건물 에너지 시뮬레이션의 유효성을 검증하기 위해 작물의 유무에 의한 분석, 정적 에너지 및 동적 에너지 분석을 실시했다. 또한 월별 최대 냉난방 부하 분석에 의해 평균 최대 난방 용량 449,578kJ·h-1, 냉방 용량 431,187kJ·h-1이 산정되었다.

Abstract AI-Helper 아이콘AI-Helper

Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses i...

주제어

참고문헌 (26)

  1. Abdel-Ghany A.M., and T. Kozai 2006, Dynamic modeling of?the environment in a naturally ventilated, fog-cooled greenhouse. Renew Energy 31:1521-1539. doi:10.1016/j.renene.2005.07.013 

  2. Banakar A., M. Montazeri, B. Ghobadian, H. Pasdarshahri, and?F. Kamrani 2021, Energy analysis and assessing heating and?cooling demands of closed greenhouse in Iran. Therm Sci?Eng Prog 25:101042. doi:10.1016/j.tsep.2021.101042 

  3. Carlini M., T. Honorati, and S. Castellucci 2012, Photovoltaic?greenhouses: Comparison of optical and thermal behaviour?for energy savings. Math Probl Eng 2012:743764. doi:10.1155/2012/743764 

  4. Choudhury B.J., S.B. Idso, and R.J. Reginato 1987, Analysis of?an empirical model for soil heat flux under a growing wheat?crop for estimating evaporation by an infrared-temperature?based energy balance equation. Agric For Meteorol 39:283-297. doi:10.1016/0168-1923(87)90021-9 

  5. Clothier B.E., K.L. Clawson, P.J. Pinter Jr., M.S. Moran, R.J.?Reginato, and R.D. Jackson 1986, Estimation of soil heat?flux net radiation during the growth of alfalfa. Agric For?Meteorol 37:319-329. 

  6. Coakley D., P. Raftery, and M. Keane 2014, A review of?methods to match building energy simulation models to?measured data. Renew Sustain Energy Rev 37:123-141.?doi:10.1016/j.rser.2014.05.007 

  7. Decano-Valentin C., I.B. Lee, U.H. Yeo, S.Y. Lee, J.G. Kim, S.J.?Park, Y.B. Choi, J.H. Cho, and H.H. Jeong 2021, Integrated?building energy simulation-life cycle assessment (BES-LCA)?approach for environmental assessment of agricultural building:?A review and application to greenhouse heating systems.?Agronomy 11:1230. doi:10.3390/agronomy11061230 

  8. Fynn R.P., A. Al-shooshan, T.H. Short, and R.W. McMahon?1993, Evapotranspiration measurement and modeling for a?potted chrysanthemum crop. Am Soc Agric Eng 36:1907-1913. doi:10.13031/2013.28541 

  9. Jo J.H., S.S. Yu, S.M. Lee, and S.G. Kang 2018, Modeling and?effectiveness verification of greenhouse dynamic systems?including model of plant growth. Proc Korean Soc Mech?Eng Spring and Autumn Conf, pp 871-875. (in Korean) 

  10. Joudi K.A., and A.A. Farhan 2015, A dynamic model and an?experimental study for the internal air and soil temperatures?in an innovative greenhouse. Energy Convers Manag 91:76-82.?doi:10.1016/j.enconman.2014.11.052 

  11. Korea Energy Economics Institute (KEEI) 2021, International?renewable energy policy changes and market analysis.?KEEI, Ulsan, Korea. (in Korean) 

  12. KOSIS 2022, Agriculture area survey. Available via https://kosis.kr/statHtml/statHtml.do?orgId101&tblIdDT_1EB001?&conn_pathI3. Accessed 20 Nov 2022. (in Korean) 

  13. Lee S.B., I.B. Lee, S.W. Hong, I.H. Seo, B.P. Jessie, K.S. Kwon,?T.H. Ha, and C.P. Han 2012, Prediction of greenhouse energy?loads using building energy simulation (BES). J Korean Soc?Agric Eng 54:113-124. (in Korean) doi:10.5389/KSAE.2012.54.3.113 

  14. Lee S.N., S.J. Park, I.B. Lee, T.H. Ha, K.S Kwon, R.W. Kim,?U.H. Yeo, and S.Y. Lee 2016, Design of energy model of?greenhouse including plant and estimation of heating and?cooling loads for a multi-span plastic-film greenhouse by?building energy simulation. Protected Hort Plant Fac 25:123-132. (in Korean) doi:10.12791/ksbec.2016.25.2.123 

  15. Liebethal C., B. Huwe, and T. Foken 2005, Sensitivity analysis?for two ground heat flux calculation approaches. Agric Meteorol 132:253-262. doi:10.1016/j.agrformet.2005.08.001 

  16. Lim T., Y.K. Baik, and D.D. Kim 2020, Heating performance?analysis of an air-to-water heat pump using underground air?for greenhouse farming. Energies 13:3863. doi:10.3390/en13153863 

  17. Ministry of Agriculture, Food and Rural Affairs (MAFRA)?2020, Greenhouse status of facility vegetable and production?performance. MAFRA, Sejong, Korea. (in Korean) 

  18. Ministry of Trade, Industry and Energy (MOTIE) 2019,?Roadmap to revitalize the hydrogen economy. MOTIE,?Sejong, Korea. (in Korean) 

  19. National Institute of Agricultural Sciences (NIAS) 2009, Case?collection of heat loss diagnosis in agricultural facilities.?NIAS, Suwon, Korea. (in Korean) 

  20. Rasheed A., H.T. Kim, and H.W. Lee 2022, Modeling-based?energy performance assessment and validation of air-to-water?heat pump system integrated with multi-span greenhouse on?cooling mode. Agronomy 12:1374. doi:10.3390/agronomy12061374 

  21. Reilly A., and O. Kinnane 2017, The impact of thermal mass on?building energy consumption. Appl Energy 198:108-121.?doi:10.1016/j.apenergy.2017.04.024 

  22. Sethi V.P., K. Sumathy, C. Lee, and D.S. Pal 2013, Thermal?modeling aspects of solar greenhouse microclimate control:?A review on heating technologies. Sol Energy 96:56-82.?doi:10.1016/j.solener.2013.06.034 

  23. Stanghellini C. 1987, Transpiration of greenhouse crops: An?aid to climate management. PhD Dissertation, Wageningen?Univ., The Netherlands. 

  24. Taki M., Y. Ajabshirchi, S.F. Ranjbar, A. Rohani, and M.?Matloobi 2016, Heat transfer and MLP neural network?models to predict inside environment variables and energy?lost in a semi-solar greenhouse. Energy Build 110:314-329.?doi:10.1016/j.enbuild.2015.11.010 

  25. Vadiee A., and V. Martin 2013, Energy analysis and thermoeconomic assessment of the closed greenhouse - The largest?commercial solar building. Appl Energy 102:1256-1266.?doi:10.1016/j.apenergy.2012.06.051 

  26. Yeo U.H., S.Y. Lee, S.J. Park, J.G. Kim, Y.B. Choi, R.W. Kim,?J.H. Shin, and I.B. Lee 2022, Rooftop greenhouse: (1) Design?and validation of a BES model for a plastic-covered greenhouse?considering the tomato crop model and natural ventilation?characteristics. Agriculture 12:903. doi:10.3390/agriculture12070903 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로