$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근
A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches 원문보기

자원환경지질 = Economic and environmental geology, v.56 no.4, 2023년, pp.475 - 499  

조재국 (공주대학교 지질환경과학과) ,  김서진 (국립중원문화재연구소) ,  한지선 (국립중원문화재연구소) ,  김수경 (국립중원문화재연구소) ,  신동복 (공주대학교 지질환경과학과) ,  곽병문 (국립중원문화재연구소) ,  홍주현 (국립중원문화재연구소) ,  유병용 (공주대학교 지질환경과학과) ,  임진아 (공주대학교 지질환경과학과)

초록
AI-Helper 아이콘AI-Helper

경상지역 제철유적의 원료산지 추정을 위해 제철시료와 주요 철광상 철광석을 대상으로 암석기재학 및 지화학적 특성을 비교 분석하였다. 각 지역에서 발굴된 제철유적 시료는 제련공정 단계에 따라 원료철광석, 괴련철, 괴련철슬래그, 선철, 선철슬래그, 단조박편, 단야철, 철정 및 화살촉으로 분류되었고 각각 상이한 구성광물과 조직을 보였다. 또한 슬래그를 구성하는 규산염광물에서의 알루미늄 및 칼슘 등의 주원소 성분의 농집과 제철유물에서 니켈 및 구리 등의 미량원소 함량이 높은 것은 원료철광석의 특성이 반영된 것으로 잠재적인 제철원료의 산지추정인자로 여겨진다. 특히 제철유적 시료의 납-스트론튬 동위원소비는 크게 1) 원료철광석과 유사한 조성을 보이는 경우, 2) 스트론튬 동위원소비가 부화된 경우, 그리고 3) 납-스트론튬 동위원소비 모두 부화된 경우로 구별되며 이러한 동위원소비 특성은 고온의 제련공정 과정에서 첨가된 특정 조재제와의 혼염 가능성을 시사한다. 이러한 결과는 첨가물이 제련과정에 미치는 잠재적인 기여 측면에서 경상지역 제철유적의 산지추정 해석에 새로운 시각을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron arch...

주제어

참고문헌 (54)

  1. Bae, H.S. (2017) The ancient iron production in the east side of the?Nakdong river-focused on Miryang Geumgok historic remains.?J. Korean history, v.40, p.5-43. (In Korean with English abstract)? 

  2. Balassone, G., Boni, M., Di Maio, G. and Villa, I. M. (2009)?Characterization of metallic artefacts from the Iron Age culture?in Campania (Italy): a multi-analytical study. Periodico Mineral.,?v.78, p.45-63. doi: 10.2451/2009PM0003? 

  3. Benvenuti, M., Dini, A., D'orazio, M., Chiarantini, L., Corretti, A.?and Costagliola, P. (2013) The tungsten and tin signature of iron?ores from Elba Island (Italy): a tool for provenance studies of?iron production in the Mediterranean region. Archaeometry, v.55,?p.479-506. doi: 10.1111/j.1475-4754.2012.00692.x? 

  4. Brenko, T., Borojevi otari, S., Karavidovi, T., Ruii, S. and Sekelj?Ivanan, T. (2021) Geochemical and mineralogical correlations?between the bog iron ores and roasted iron ores of the Podravina?region, Croatia. CATENA, v.204, p.105353. doi: 10.1016/j.catena.2021.105353? 

  5. Brenko, T., Karavidovi, T., Borojevi otari, S. and Sekelj Ivanan, T.?(2022) The contribution of geochemical and mineralogical?characterization of iron slags in provenance studies in the?Podravina region, NE Croatia. Geologia Croatica, v.75, p.165-176. doi: 10.4154/gc.2022.11? 

  6. Choi, M.J. (2012) Iron relics of the Korean Peninsula. Cultural?Properties Investigation & Research Institute Association, 779p.? 

  7. Cline, J.S. (2001) Timing of gold and arsenic sulfide mineral deposition?at the Getchell Carlin-type gold deposit, north-central Nevada.?Econ. Geol. v.96, p.75-89. doi: 10.2113/gsecongeo.96.1.75? 

  8. Coustures, M.P., Beziat, D. and Tollon, F. (2003) The use of trace?element analysis of entrapped slag inclusions to establish ore-bar?iron links: Examples from two Gallo-Roman iron-making sites?in France (Les Martys, Montagne Noire, and Les Ferrys, Loiret).?Archaeometry, v.45, p.599-613. doi: 10.1046/j.1475-4754.2003.00131.x? 

  9. Degryse, P., Schneider, J.C. and Muchez, P. (2009) Combined Pb-Sr?isotopic analysis in provenancing late Roman iron raw materials?in the territory of Sagalassos (SW Turkey). Archaeol. Anthropol.?Sci., v.1, p.155-159. doi: 10.1007/s12520-009-0010-7? 

  10. Devos, W., Senn-Luder, M., Moor, C. and Salter, C. (2000) Laser?ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace analysis of early-medieval?archaeological iron finds. Fresenius' J. Anal. Chem., v.366,?p.873-880. doi: 10.1007/s002160051588? 

  11. Esson, J., Stevens, R.H. and Vincent, E.A. (1965) Aspects of the?geochemistry of arsenic and antimony, exemplified by the?Skaergaard intrusion. Mineral. Mag., v.35, p.88-107. doi: 10.1180/minmag.1965.035.269.12? 

  12. Giacometti, F., Rebay, G., Riccardi, M.P., Tarantino, S.C., Tizzoni,?C.C. and Tizzoni, M. (2014) Iron Age silicate slags from Val?Malenco (Italy): the role of textural and compositional studies in?the reconstruction of smelting conditions. Periodico Mineral.,?v.83, p.329-344. doi: 10.2451/2014PM0018? 

  13. Han, J.S. (2018) Research status and assignment on Baekje iron?manufacturing process. Baekje Hakbo, v.25 p.31-62. (In Korean?with English abstract)? 

  14. Han, M.A. (2015) Study of ancient Ulsan Jungsandong regional?power. Ulsan Sahka, v.19, p.69-96. (In Korean with English?abstract)? 

  15. Hedges, R.E.M. and Salter, C.J. (1979) Source determination of iron?currency bars through analysis of the slag inclusions. Archaeometry,?v.21, p.161-175. doi: 10.1111/j.1475-4754.1979.tb00250.x? 

  16. Heo, C.H., Yun, S.T., Choi, S.H., Choi, S.G. and So, C.S. (2003)?Copper minerarlization in the Haman-Gunbuk area, Gyeongsangnamdo Province: Fluid inclusion and stable isotope study.?Econ. Environ. Geol., v.36. p.75-87. (In Korean with English?abstract)? 

  17. KIGAM (Korea Institute of Geoscience and Mineral Resources)?(2023) Geologic map of Korea 1:50,000. (www.kigam.re.kr)? 

  18. Kim, G.S. (2017) Foreign relations based on the Dalcheon relic of?Ulsan. Ulsan Sahak, v.21, p.1-23. (In Korean with English abstract)? 

  19. Kim, K.B. and Hwang, S.K. (1988) Geological report of the Miryang?sheet (1:50,000). Korea Institute of Energy and Resources. 66p.? 

  20. Kim, K.H., Park, J.K., Yang, J.M. and Satake, H. (1993) A study on?sepentinization of serpentinites from the Ulsan iron mine. J.?Korean Inst. Mining Geol., v.26, p.267-278. (In Korean with?English abstract)? 

  21. Kim, K.I. (2021) A study on the type and the smelting method of an?iron masking furnace in the Goryeo Dynasty located in Wano-ri,?Chungju. J. Korea Middle Ages Archaeol. Soc., v.10, p.5-43 (In?Korean with English abstract)? 

  22. Kim, K.I. (2010) A study of analysis of types of iron-manufacturing?furnace-On the characteristics of sill iron manufacturing culture.?Kyoung-Ju Sahak, v.31, p.35-88. (In Korean with English abstract)? 

  23. Kim. K.I. and Lee, N.K. (2016) Archeological interpretation and use?about the metallurgical analysis of iron making artifacts.?Komunhwa, v.88. p.69-102. (In Korean with English abstract)? 

  24. Kim, S.U. (1973) A regional study for developments of Kyeongnam?copper metallogenic province. Econ. Environ. Geol., v.6, p.133-170. (In Korean with English abstract)? 

  25. Lee, D.H. (2018) Verification of theory of steel production at Byun?Han and the meaning. DANGUNHAK KENKYU, v.39, p.93-123.?(In Korean with English Abstract). doi: 10.18706/jgds.2018.12.39.93? 

  26. Lee, E.W., Han, J.S., Kwak, B.M., Kim, D.W., Kim, E.J., Jeong,?N.H. and Han, Y.W. (2016) Natural scientific analysis report on?samples excavated from iron remains in Gyeongsang Region.?Jungwon National Research Institute of Cultural Heritage, 11-1550159-000041-01, 182p. (In Korean with English abstract)? 

  27. Lee, H.G., Mun, H.S. and Oh, M.S. (2007) Economic mineral deposits?in Korea. Daewoo Foundation, Acanet, 587p. (In Korean)? 

  28. Lee, J.Y., Kim, S.W. and Kim, Y.G. (1992) A geochemical study on?Ulsan granite in relation to iron ore deposits in the Gyeongsang?basin. J. Korean Inst. Mining Geol., v.25, p.133-143. (In Korean?with English abstract)? 

  29. Liu, X., Yang, K., Rusk, B., Qiu, Z., Hu, F. and Pironon, J. (2019)?Copper sulfide remobilization and mineralization during?Paleoproterozoic retrograde metamorphism in the Tongkuangyu?copper deposit, North China Craton. Minerals, v.9, p.127.? 

  30. Maciag, B.J. and Brenan, J.M. (2020) Speciation of arsenic and?antimony in basaltic magmas: Geochim. Cosmochim. Acta,?v.276, p.198-218. doi: 10.1016/j.gca.2020.02.022? 

  31. Mabuchi, H. and Hirao Y. (1987) Lead isotope ratios of lead ores in?East Asia in relation to bronze artifacts, Kokogaku Zasshi, v.73,?p.199-245 (In Japanese).? 

  32. Matsueda, H. (2013) Information of geology and iron resources in?East Russia, with special reference to the estimation on the source?of iron ore for ironware in Prehistoric times. Bulletin Hokkaido?Univ. Museum, v.6, p.116-129 (In Japanese with English abstract).? 

  33. Molofsky, L.J., Killick, D., Ducea, M.N., Macovei, M., Chesley,?J.T., Ruiz, J., Thibodeau, A. and Popescu, G.C. (2014) A novel?approach to lead isotope provenance studies of tin and bronze:?applications to South African, Botswanan and Romanian artifacts.?J. Archaeol. Sci., v.50, p.440-450. doi: 10.1016/j.jas.2014.08.006? 

  34. Nadoll, P., Angerer, T., Mauk, J.L., French, D., and Walshe, J.?(2014) The chemistry of hydrothermal magnetite: A review. Ore?Geol. Rev. v.61, p.1-32. doi: 10.1016/j.oregeorev.2013.12.013? 

  35. Nadoll, P., Mauk, J.L., Leveille, R.A., and Koenig, A.E. (2015)?Geochemistry of magnetite from porphyry Cu and skarn deposits?in the southwestern United States. Miner. Depos. v.50, p.493-515. doi: 10.1007/s00126-014-0539-y? 

  36. Park, J.K. and Lee, H.Y. (2003) Petrochemistry of the Hongcheon?Fe-REE ore deposit in the Hongcheon area, Korea. J. Petrol. Soc.?Korea, v.12, p.135-153. (In Korean with English abstract)? 

  37. Park, K.H. and Park, H.I. (1980) On the genesis of Ulsan iron-tungsten deposits. Mining Geol., v.13, p.104-116. (In Korean?with English abstract)? 

  38. Park, Y.D. and Yoon, H.D. (1968) Explanatory text of the geological?map of Ulsan sheet(1:50,000). Geological Survey of Korea. 36p.? 

  39. Ryu, I.C., Choi, S.G. and Wee, S.M. (2006) An inquiry into the?formation and deformation of the Cretaceous Gyeongsang?(Kyongsang) Basin, Southeastern Korea. Econ. Environ. Geol.,?v.39, p.129-149. (In Korean with English abstract)? 

  40. Schwab, R., Heger, D., Hoppner, B. and Pernicka, E. (2006) The?provenance of iron artefacts from Manching. A multi-technique?approach. Archaeometry, v.48, p.433-452. doi: 10.1111/j.1475-4754.2006.00265.x? 

  41. Seo, J., Choi, S.G., Kim, D.W., Park, J.W. and Oh, C.W. (2015) A?new genetic model for the Triassic Yangyang iron-oxide apatite?deposit, South Korea: Constraints from in situ U-Pb and trace?element analyses of accessory minerals. Ore Geol. Rev., v.70,?p.110-135. doi: 10.1016/j.oregeorev.2015.04.009? 

  42. Seong, J.Y. (2018) The aspect of iron production and distribution of?Gaya area. Hoseo Sahak, v.85, p.223-259. (In Korean)? 

  43. Shin, B.B. (2011) On the change of tombs and steel production in?ancient Gimhae. Journal of North-east Asian Cultures, v.26,?p.203-222. (In Korean with English abstract)? 

  44. Shin, D.B., Jo, J.G., Im, H.K., Lee, S.Y., Kim, H.W., Yeom, K.H.,?and Yu, B.Y. (2020) Analytical study for raw material?provenance of domestic iron artifacts (first-year report). Jungwon?National Research Institute of Cultural Heritage, 11-1550159-000061-01, 90p. (In Korean)? 

  45. Shin, D.B., Jo, J.G., Im, H.K., Yeom, K.H., Yu, B.Y. and Im, J.A.?(2021a) Analytical study for raw material provenance of?domestic iron artifacts (second-year report). Jungwon National?Research Institute of Cultural Heritage, 11-1550159-000069-01,?93p. (In Korean)? 

  46. Shin, W.J., Ryu, J.S., Kim, R.H. and Min, J.S. (2021b) First?strontium isotope map of groundwater in South Korea:?applications for identifying the geographical origin. Geosci. J.,?v.25, p.173-181. doi: 10.1007/s12303-020-0013-z? 

  47. Son, M.S., (2016) A consideration on Silla potteries with symbol?inscription-Focusing on the historic site in Gyeongju Nodongdong 12-. Journal of wooden slips and characters, v.16, p.85-105.?(In Korean with English abstract)? 

  48. Stepanov, I.S., Weeks, L., Franke, K.A., Overlaet, B., Alard, O.,?Cable, C.M., Al Aali, Y.Y., Boraik, M., Zein, H. and Grave, P.?(2020) The provenance of early Iron Age ferrous remains from?southeastern Arabia. J. Archaeol. Sci., v.120, p.105192. doi: 10.1016/j.jas.2020.105192? 

  49. Sun, W.D., Zhang, L.P., Guo, J., Li, C.Y., Jiang, Y.H., Zartman, R.E.?and Zhang, Z.F. (2016) Origin of the mysterious Yin-Shang?bronzes in China indicated by lead isotopes. Scientific Reports,?v.6, p.23304. doi: 10.1038/srep23304? 

  50. Sung, M.H., (2017) A review on the production workshop of?ironware in the Early Choseon dynasty. Ulsan Sahak, v.21, p.25-50. (In Korean with English abstract)? 

  51. Wawryk, C.M. and Foden, J.D. (2015) Fe-isotope fractionation in?magmatic-hydrothermal mineral deposits: A case study from the?Renison Sn-W deposit, Tasmania. Geochim. Cosmochim. Acta,?v.150, p.285-298. doi: 10.1016/j.gca.2014.09.044? 

  52. Woo, Y.K., Lee, M.S. and Park, H.I. (1982) Studies on the skarn-type ore deposits and skarn minerals in Gyeongnam Province.?Ministry of Science & Technology, TRKO200200009015, 73p.?(In Korean with English abstract)? 

  53. Zhang, Y.B., Wan, B., Wu, F.Y., Zhai, M.G., Wang, T., Zhang, X.H.,?Li, Q.L., Peng, P. and Hou, Q.L. (2022) Late Cretaceous-early?Paleogene magmatism in the Gyeongsang basin, southeast Korea?and its implications for middle Paleogene climate change.?Journal of Asian Earth Sciences, v.237, p.105346. doi: 10.1016/j.jseaes.2022.105346? 

  54. Zhang, Y.B., Zhai, M., Hou, Q.L., Li, T.S., Liu, F., and Hu, B.,?(2012) Late Cretaceous volcanic rocks and associated granites in?Gyeongsang Basin, SE Korea: Their chronological ages and?tectonic implications for cratonic destruction of the North China?Craton. Journal of Asian Earth Sciences, v.47, p.252-264. doi: 10.1016/j.jseaes.2011.12.011? 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로