$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해양 미생물에 의한 폴리하이드록시알카노에이트 생산의 최근 동향
Recent Trends in The Production of Polyhydroxyalkanoates Using Marine Microorganisms 원문보기

생명과학회지 = Journal of life science, v.33 no.8, 2023년, pp.680 - 691  

김선민 (부경대학교 자연과학대학 미생물학과) ,  이혜인 (부경대학교 자연과학대학 미생물학과) ,  정해수 (부경대학교 자연과학대학 미생물학과) ,  전용재 (부경대학교 자연과학대학 미생물학과)

초록
AI-Helper 아이콘AI-Helper

오일 피크, 기후변화 그리고 미세 플라스틱과 관련된 석유합성 플라스틱의 생산과 사용은, 지속 가능한 인류 생활을 위협하는 범세계적 이슈로 대두되고 있다. 이러한 문제를 해결하기 위해 다양한 생분해성 친환경 바이오플라스틱 소재가 대안이 되고 있으며, 그중 주목받고 있는 소재 중 하나는 polyhydroxyalkanoates (PHA) 생분해성 바이오플라스틱이다. 본 총설은 PHA 생산공정에 이용될 수 있는 해양 미생물의 산업적 활용 이점과 현재까지 밝혀진 해양미생물의 생산성을 비교하고, 이들이 산업에서 활용되기 위해 필요한 연구개발 현황에 대해 조사하였다. 조사 결과 해양미생물로부터 생산된 PHA는 석유합성 플라스틱이 보유한 다양한 물리적 특성을 띄는 중합체 소재로의 대체 가능성과, 배지 제조 시 해수를 사용할 수 있는 장점, 특별한 멸균 과정이 필요치 않은 장점, 그리고 분리 정제 과정 등에서 비용 절감의 장점을 제공할 수 있음을 확인하였다. 하지만 해양미생물의 PHA 생산성은 육상에서 분리된 상용화 균주에 비해 다소 떨어지는 효율을 보이는 것을 확인하였다. 이러한 문제점을 해결하기 위해 최근 선진 omics 기반 합성 미생물학 기반 기술을 활용하여, 고밀도 연속배양기술 개발, PHA 효율 증진 및 다양한 시장 요구에 필요한 생분해성 플라스틱 소재 개발이 미래 플라스틱 대체 소재 개발에 필요한 연구임을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Peak oil, climate change, and microplastics caused by the production and usage of petroleum-based plastics have threatened the sustainability of our daily life, and this has emerged as a recent global issue. To solve this global issue, the production and usage of biodegradable eco-friendly bioplasti...

주제어

표/그림 (7)

참고문헌 (85)

  1. Abd El-malek, F., Rofeal, M., Farag, A., Omar, S. and?Khairy, H. 2021. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective?Mediterranean algal hydrolysate media. J. Biotechnol. 328, 95-105. 

  2. Akdogan, M. and Celik, E. 2018. Purification and characterization of polyhydroxyalkanoate (PHA) from a Bacillus?megaterium strain using various dehydration techniques:?PHA purification from B. megaterium using various dehydration techniques. J. Chem. Technol. Biotechnol. 93, 2292-2298. 

  3. Alsaadi, A., Ganesen, S. S. K., Amelia, T. S. M., Moanis,?R., Peeters, E., Vigneswari, S. and Bhubalan, K. 2022.?Polyhydroxyalkanoate (PHA) biopolymer synthesis by?marine bacteria of the malaysian Coral Triangle region and?mining for PHA synthase genes. Microorganisms 10, 2057. 

  4. Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum,?M. N. and Tabasum, S. 2016. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review?of recent advancements. Int. J. Biol. Macromol. 89, 161-174. 

  5. Bhattacharyya, A., Pramanik, A., Maji, S. K., Haldar, S.,?Mukhopadhyay, U. K. and Mukherjee, J. 2012. Utilization?of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express?2, 1-10. 

  6. Bindu, J., Sathish Kumar, K., Panda, S. K. and Katiyar,?V. 2019. Biopolymer dispersed poly lactic acid composites?and blends for food packaging applications. In: Katiyar,?V., Gupta, R., Ghosh, T. (eds), Advances in Sustainable?Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. 

  7. Cervantes-Uc, J. M., Catzin, J., Vargas, I., Herrera-Kao,?W., Moguel, F., Ramirez, E., Rincon-Arriaga, S. and?Lizama-Uc, G. 2014. Biosynthesis and characterization of?polyhydroxyalkanoates produced by an extreme halophilic?bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J. Appl. Microbiol. 117, 1056-1065. 

  8. Chen, C. W., Don, T. M. and Yen, H. F. 2006. Enzymatic?extruded starch as a carbon source for the production of?poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem. 41, 2289-2296. 

  9. Chen, G. Q. 2009. A microbial polyhydroxyalkanoates?(PHA) based bio- and materials industry. Chem. Soc. Rev.?38, 2434. 

  10. Chiulan, I., Frone, A., Brandabur, C. and Panaitescu, D. 2017. Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5, 2. 

  11. Choi, J. and Lee, S. Y. 1999. Factors affecting the economics of polyhydroxyalkanoate production by bacterial?fermentation. Appl. Microbiol. Biotechnol. 51, 13-21. 

  12. Choi, J. E., Na, H. Y., Yang, T. H., Rhee, S. K. and Song,?J. K. 2015. A lipophilic fluorescent LipidGreen1-based?quantification method for high-throughput screening analysis of intracellular poly-3-hydroxybutyrate. AMB Express?5, 48. 

  13. Christensen, M., Chiciudean, I., Jablonski, P., Tanase, A.?M., Shapaval, V. and Hansen, H. 2023. Towards high-throughput screening (HTS) of polyhydroxyalkanoate?(PHA) production via Fourier transform infrared (FTIR)?spectroscopy of Halomonas sp. R5-57 and Pseudomonas?sp. MR4-99. PLoS One 18, e0282623. 

  14. Crisafi, F., Valentino, F., Micolucci, F. and Denaro, R. 2022. From organic wastes and hydrocarbons pollutants?to polyhydroxyalkanoates: bioconversion by terrestrial and?marine bacteria. Sustainability 14, 8241. 

  15. Crutchik, D., Franchi, O., Caminos, L., Jeison, D., Belmonte, M., Pedrouso, A., Val Del Rio, A., Mosquera-Corral, A. and Campos, J. L. 2020. Polyhydroxyalkanoates?(PHAs) production: A feasible economic option for the?treatment of sewage sludge in municipal wastewater treatment plants? Water 12, 1118. 

  16. Danis, O., Ogan, A., Tatlican, P., Attar, A., Cakmakci, E.,?Mertoglu, B. and Birbir, M. 2015. Preparation of poly(3-?hydroxybutyrate-co-hydroxyvalerate) films from halophilic?archaea and their potential use in drug delivery. Extremophiles 19, 515-524. 

  17. Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van De?Wiele, T., Sorgeloos, P., Bossier, P. and Verstraete, W. 2007. The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio?campbellii. Environ. Microbiol. 9, 445-452. 

  18. Dhangdhariya, J. H., Dubey, S., Trivedi, H. B., Pancha,?I., Bhatt, J. K., Dave, B. P. and Mishra, S. 2015. Polyhydroxyalkanoate from marine Bacillus megaterium using?CSMCRI's Dry Sea Mix as a novel growth medium. Int.?J. Biol. Macromol. 76, 254-261. 

  19. Dilkes-Hoffman, L. S., Lant, P. A., Laycock, B. and Pratt,?S. 2019. The rate of biodegradation of PHA bioplastics in?the marine environment: a meta-study. Mar. Pollut. Bull.?142, 15-24. 

  20. Don, T. M., Chen, C. W. and Chan, T. H. 2006. Preparation?and characterization of poly(hydroxyalkanoate) from the?fermentation of Haloferax mediterranei. J. Biomater. Sci.?Polym. Ed. 17, 1425-1438. 

  21. Elain, A., Le Grand, A., Corre, Y. M., Le Fellic, M.,?Hachet, N., Le Tilly, V., Loulergue, P., Audic, J. L. and?Bruzaud, S. 2016. Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production. Ind. Crops Prod. 80, 1-5. 

  22. Eronen-Rasimus, E., Hultman, J., Hai, T., Pessi, I. S.,?Collins, E., Wright, S., Laine, P., Viitamaki, S., Lyra, C.?and Thomas, D. N. 2021. Sea-ice bacteria Halomonas sp.?strain 363 and Paracoccus sp. strain 392 produce multiple?types of poly-3-hydroxyalkaonoic acid (PHA) storage polymers at low temperature. Appl. Environ. Microbiol. 87, e00929-00921. 

  23. Gagnon, K., Lenz, R., Farris, R. and Fuller, R. 1992.?Crystallization behavior and its influence on the mechanical properties of a thermoplastic elastomer produced by?Pseudomonas oleovorans. Macromolecules 25, 3723-3728. 

  24. Ghosh, S., Gnaim, R., Greiserman, S., Fadeev, L., Gozin,?M. and Golberg, A. 2019. Macroalgal biomass subcritical?hydrolysates for the production of polyhydroxyalkanoate?(PHA) by Haloferax mediterranei. Bioresour. Technol.?271, 166-173. 

  25. Hai, T., Lange, D., Rabus, R. and Steinbuchel, A. 2004.?Polyhydroxyalkanoate (PHA) accumulation in sulfate-reducing bacteria and identification of a class III PHA synthase (PhaEC) in Desulfococcus multivorans. Appl. Environ.?Microbiol. 70, 4440-4448. 

  26. Hartmann, R., Hany, R., Pletscher, E., Ritter, A., Witholt,?B. and Zinn, M. 2006. Tailor-made olefinic medium-chain-length poly [(R)-3-hydroxyalkanoates] by Pseudomonas?putida GPo1: batch versus chemostat production. Biotechnol. Bioeng. 93, 737-746. 

  27. Hezayen, F. F., Rehm, B. H. A., Eberhardt, R. and?Steinbuchel, A. 2000. Polymer production by two newly?isolated extremely halophilic archaea: application of a novel?corrosion-resistant bioreactor. Appl. Microbiol. Biotechnol.?54, 319-325. 

  28. Hong, J. W., Song, H. S., Moon, Y. M., Hong, Y. G.,?Bhatia, S. K., Jung, H. R., Choi, T. R., Yang, S. Y., Park,?H. Y., Choi, Y. K. and Yang, Y. H. 2019. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess?Biosyst. Eng. 42, 603-610. 

  29. Juengert, J., Bresan, S. and Jendrossek, D. 2018. Determination of polyhydroxybutyrate (PHB) content in Ralstonia?eutropha using gas chromatography and nile red staining.?Bio-protoc. 8, e2748. 

  30. Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang,?Y. K. and Woo, S. I. 1994. Production of poly?(3-hydroxybutyric acid) by fed-batch culture of?Alcaligenes eutrophus with glucose concentration control.?Biotechnol. Bioeng. 43, 892-898. 

  31. Kim, S. W., Kim, P., Lee, H. S. and Kim, J. H. 1996.?High production of Poly-β-hydroxybutyrate (PHB) from?Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 18, 25-30. 

  32. Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlic, A.?and Braunegg, G. 2007. Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei.?Macromol. Symp. 253, 33-39. 

  33. Koller, M. and Mukherjee, A. 2022. A new wave of industrialization of PHA biopolyesters. Bioengineering (Basel)?9, 74. 

  34. Koller, M. and Rodriguez-Contreras, A. 2015. Techniques?for tracing PHA-producing organisms and for qualitative?and quantitative analysis of intra- and extracellular PHA.?Eng. Life Sci. 15, 558-581. 

  35. Kshirsagar, P., Suttar, R., Nilegaonkar, S., Kulkarni, S. and?Kanekar, P. 2012. Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J. Biochem. Technol. 4,?512-517. 

  36. Lamberti, F. M., Roman-Ramirez, L. A. and Wood, J. 2020. Recycling of bioplastics: routes and benefits. J.?Polym. Environ. 28, 2551-2571. 

  37. Lee, C. 2018. Control of molecular weight and terminal?groups of poly (3-hydroxybutyrate) in bio-synthesis. Text.?Color. and Finish. 30, 130-140. 

  38. Lee, E., Jendrossek, D., Schirmer, A., Choi, C. and Steinbuchel, A. 1995. Biosynthesis of copolyesters consisting?of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1, 3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. Appl. Microbiol.?Biotechnol. 42, 901-909. 

  39. Lee, S. Y. and Chang, H. N. 1993. High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol. Lett. 15, 971-974. 

  40. Lee, S. Y., Lee, Y. K. and Chang, H. N. 1995. Stimulatory?effects of amino acids and oleic acid on poly (3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. J. Biosci. Bioeng. 79, 177-180. 

  41. Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E.?M., Hunsinger, G. B., Franden, M. A., Johnson, C. W.,?Chupka, G., Strathmann, T. J., Pienkos, P. T. and Beck- ham, G. T. 2014. Lignin valorization through integrated?biological funneling and chemical catalysis. Proc. Natl.?Acad. Sci. USA. 111, 12013-12018. 

  42. Mahansaria, R., Dhara, A., Saha, A., Haldar, S. and Mukherjee, J. 2018. Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense?strain RM-G10. Int. J. Biol. Macromol. 107, 1480-1490. 

  43. Marschessault, R. H., Monasterios, C. J., Morin, F. G. and?Sundararajan, P. R. 1990. Chiral poly(β-hydroxyalkanoates): an adaptable helix influenced by the alkane sidechain. Int. J. Biol. Macromol. 12, 158-165. 

  44. Mathuriya, A. S. and Yakhmi, J. V. 2017. Polyhydroxyalkanoates: biodegradable plastics and their applications, pp.?1-29. In: Martinez, L. M. T., Kharissova, O. V. and?Kharisov, B. I. (eds.), Handbook of Ecomaterials. Springer?International Publishing: Cham. 

  45. Mayr, L. M. and Bojanic, D. 2009. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580-588. 

  46. Mazhandu, Z. S., Belaid, M., Nhubu, T. and Muzenda, E. 2021. Potential impact of the Covid-19 pandemic on plastic medical waste management in South Africa: a narrative review. 2021 9th International Renewable and?Sustainable Energy. IEEE. 

  47. Mirjalili, F., Chuah, L. and Salahi, E. 2014. Mechanical?and morphological properties of polypropylene/nano α-Al 2 O 3 composites. Sci. World J. 2014, 1-12. 

  48. Mitra, R., Xu, T., Xiang, H. and Han, J. 2020. Current?developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell?Fact. 19, 1-30. 

  49. Mohammadipanah, F., Hamedi, J. and Dehhaghi, M. 2015.?Halophilic bacteria: potentials and applications in biotechnology, pp. 277-321. In: Maheshwari, D., Saraf, M.?(eds), Halophiles. Sustainable Development and Biodiversity. vol 6. Springer, Cham. 

  50. Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F.,?Ahmad, M. H. and AbdulGhani, A. 2022. Sustainability?of biodegradable plastics: new problem or solution to?solve the global plastic pollution? Curr. Opin. Green?Sustain. Chem. 5, 100273. 

  51. Naser, A. Z., Deiab, I. and Darras, B. M. 2021. Poly (lactic?acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv.?11, 17151-17196. 

  52. Neoh, S. Z., Chek, M. F., Tan, H. T., Linares-Pasten, J.?A., Nandakumar, A., Hakoshima, T. and Sudesh, K. 2022.?Polyhydroxyalkanoate synthase (PhaC): the key enzyme?for biopolyester synthesis. Curr. Res. Biotechnol. 4, 87-101. 

  53. Numata, K., Morisaki, K., Tomizawa, S., Ohtani, M.,?Demura, T., Miyazaki, M., Nogi, Y. and Deguchi, S. 2013.?Synthesis of poly-and oligo (hydroxyalkanoate) s by deepsea bacteria, Colwellia spp., Moritella spp., and Shewanella?spp. Polym. J. 45, 1094-1100. 

  54. Park, D. H. and Kim, B. S. 2010. Characteristics of polyhydroxyalkanoates synthesis by Ralstonia eutropha from?vegetable oils. KSBB J. 25, 239-243. 

  55. Plackett, D. and Siro, I. 2011. Polyhydroxyalkanoates?(PHAs) for food packaging, pp. 498-526. In: Lagaron, J.?M. (eds.), Multifunctional and Nanoreinforced Polymers?for Food Packaging, Woodhead Publishing Ltd. 

  56. Quillaguaman, J., Guzman, H., Van-Thuoc, D. and HattiKaul, R. 2010. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future?prospects. Appl. Microbiol. Biotechnol. 85, 1687-1696. 

  57. Rahman, M. H. and Bhoi, P. R. 2021. An overview of?non-biodegradable bioplastics. J. Clean. Prod. 294, 126218. 

  58. Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R.?and Roy, I. 2011. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the?future. Mater. Sci. Eng. R Rep. 72, 29-47. 

  59. Rajpoot, A. S., Choudhary, T., Chelladurai, H., Nath?Verma, T. and Shende, V. 2022. A comprehensive review on bioplastic production from microalgae. Mater. Today:?Proc. 56, 171-178. 

  60. Ray, S. and Kalia, V. C. 2017. Biomedical applications?of polyhydroxyalkanoates. Indian J. Microbiol. 57, 261-269. 

  61. Reddy, S. V., Thirumala, M. and Mahmood, S. 2009. A?novel Bacillus sp. accumulating poly (3-hydroxybutyrateco-3-hydroxyvalerate) from a single carbon substrate. J.?Ind. Microbiol. Biotechnol. 36, 837-843. 

  62. Revelo Romo, D. M., Grosso, M. V., Moreno Solano, N.?C. and Montoya Castano, D. 2007. A most effective method for selecting a broad range of short and medium-chainlength polyhidroxyalcanoate producing microorganisms.?Electron. J. Biotechnol. 10, 348-357. 

  63. Riedel, S. L., Jahns, S., Koenig, S., Bock, M. C. E., Brigham, C. J., Bader, J. and Stahl, U. 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214, 119-127. 

  64. Rodriguez-Contreras, A., Koller, M., Miranda-de Sousa?Dias, M., Calafell-Monfort, M., Braunegg, G. and Marques-Calvo, M. S. 2013. High production of poly (3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J.?Appl. Microbiol. 114, 1378-1387. 

  65. Ron?osova, S., Legerska, B., Chmelova, D., Ondrejovic, M. and Miertus, S. 2022. Optimization of growth conditions to enhance PHA production by Cupriavidus necator. Fermentation 8, 451. 

  66. Sabapathy, P. C., Devaraj, S., Meixner, K., Anburajan, P.,?Kathirvel, P., Ravikumar, Y., Zabed, H. M. and Qi, X.?2020. Recent developments in Polyhydroxyalkanoates?(PHAs) production-A review. Bioresour. Technol. 306, 123132. 

  67. Salgaonkar, B. and Braganca, J. 2017. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3?for biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 4, 50. 

  68. Sheu, D. S., Wang, Y. T. and Lee, C. Y. 2000. Rapid?detection of polyhydroxyalkanoate-accumulating bacteria?isolated from the environment by colony PCR. Microbiology 146, 2019-2025. 

  69. Shim, H. J., Ryu, H. W., Cho, K. S., Kim, B. S., Chang,?Y. K. and Chang, H. N. 1999. Mass production of poly?(3-hydroxybutyrate) by fed-batch cultures of Ralstonia eutropha with nitrogen and phosphate limitation. J. Microbiol.?Biotechnol. 9, 751-756. 

  70. Singh Saharan, B., Grewal, A. and Kumar, P. 2014.?Biotechnological production of polyhydroxyalkanoates: a review on rrends and latest developments. Chin. J. Biol.?2014, 1-18. 

  71. Solaiman, D. K. Y., Ashby, R. D. and Foglia, T. A. 2000.?Rapid and specific identification of medium-chain-length?polyhydroxyalkanoate synthase gene by polymerase chain?reaction. Appl. Microbiol. Biotechnol. 53, 690-694. 

  72. Son, H. J., Min, K. P. and Lee, S. J. 1995. Production?of poly (hydroxybutyric-co-hydroxyvaleric) acid by Pseudomonas sp. HJ. KSBB J. 10, 349-356. 

  73. Stanley, A., Mutturi, S. and Vijayendra, S. 2021. Halophilic microorganisms as potential producers of polyhydroxyalkanoates, pp. 277-294. In: Kuddus, M. (eds.), Bioplastics for Sustainable Development, Springer Singapore. 

  74. Surendran, A., Lakshmanan, M., Chee, J. Y., Sulaiman,?A. M., Thuoc, D. V. and Sudesh, K. 2020. Can polyhydroxyalkanoates be produced efficiently from waste?plant and animal oils? Front. Bioeng. Biotechnol. 8, 169. 

  75. Takahashi, R. Y. U., Castilho, N. A. S., Silva, M. A. C.?d., Miotto, M. C. and Lima, A. O. D. S. 2017. Prospecting?for marine bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 4, 60. 

  76. Tan, D., Wang, Y., Tong, Y. and Chen, G. Q. 2021. Grand?challenges for industrializing polyhydroxyalkanoates (PHAs).?Trends Biotechnol. 39, 953-963. 

  77. Tan, D., Xue, Y. S., Aibaidula, G. and Chen, G. Q. 2011.?Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour. Technol. 102, 8130-8136. 

  78. Tan, G. Y. A., Chen, C. L., Li, L., Ge, L., Wang, L.,?Razaad, I. M. N., Li, Y., Zhao, L., Mo, Y. and Wang, J. Y. 2014. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6, 706-754. 

  79. Tsuge, T., Hyakutake, M. and Mizuno, K. 2015. Class IV?polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 99, 6231-6240. 

  80. Van-Thuoc, D., Huu-Phong, T., Minh-Khuong, D. and?Hatti-Kaul, R. 2015. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia?sp. ND199 using glycerol as a carbon source. Appl. Biochem. Biotechnol. 175, 3120-3132. 

  81. Wang, F. and Lee, S. Y. 1997. Poly (3-hydroxybutyrate)?production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl. Environ. Microbiol. 63, 3703-3706. 

  82. Wei, Y. H., Chen, W. C., Wu, H. S. and Janarthanan, O.?M. 2011. Biodegradable and biocompatible biomaterial,?polyhydroxybutyrate, produced by an indigenous Vibrio?sp. BM-1 isolated from marine environment. Mar. Drugs?9, 615-624. 

  83. Yadav, B., Talan, A., Tyagi, R. D. and Drogui, P. 2021.?Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: a review. Bioresour.?Technol. 337, 125419. 

  84. Zhao, Y. X., Rao, Z. M., Xue, Y. F., Gong, P., Ji, Y. Z.?and Ma, Y. H. 2015. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by haloarchaeon Halogranum?amylolyticum. Appl. Microbiol. Biotechnol. 99, 7639-7649. 

  85. Zheng, Y., Chen, J. C., Ma, Y. M. and Chen, G. Q. 2020.?Engineering biosynthesis of polyhydroxyalkanoates (PHA)?for diversity and cost reduction. Metab. Eng. 58, 82-93. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로