$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산불에 의한 지하수 토양 환경오염과 방사성 물질 분포 및 거동 영향 고찰
Groundwater and Soil Pollution Caused by Forest Fires, and Its Effects on the Distribution and Transport of Radionuclides in Subsurface Environments: Review 원문보기

자원환경지질 = Economic and environmental geology, v.56 no.5, 2023년, pp.501 - 514  

배효진 (한국기초과학지원연구원) ,  정성욱 (한국기초과학지원연구원) ,  오정선 (한국건설기술연구원) ,  정진아 (경북대학교)

초록
AI-Helper 아이콘AI-Helper

산불은 연소 과정에서 다양한 오염물질을 배출하여 심각한 환경 문제를 초래할 수 있다. 최근 지구 온난화와 기후변화의 영향으로 전 세계적으로 산불의 규모와 빈도가 증가하여 환경에 미치는 영향 역시 급증할 것으로 예상된다. 한국은 산불 발생이 빈번한 동해안 지역에 원자력 발전소가 위치하고 있어, 중대 사고에 대비하여 산불 환경에서 방사성 핵종의 거동 특성에 대한 이해가 요구된다. 본 리뷰 논문에서는 산불이 지하수 토양 환경에 가져오는 변화와 오염 특성을 검토하고, 산불로 변화된 지하수 토양 환경에서의 방사성 핵종 거동을 고찰하였다. 특히, 변화된 지중환경의 여러 특성 중 방사성 핵종의 거동에 영향을 미칠 수 있는 요인들을 고려하였으며, 보다 구체적인 메커니즘 이해를 위해 산불이 초래하는 지하수 토양 환경 변화와 오염에 대한 연구의 필요성을 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Forest fires can generate numerous pollutants through the combustion of vegetation and cause serious environmental problems. The global warming and climate change will increase the frequency and scale of forest fires across the world. In Korea, many nuclear power plants (NPPs) are located in the Eas...

주제어

참고문헌 (135)

  1. Abdollahi, M., Dewan, A. and Hassan, Q.K. (2019) Applicability of?remote sensing-based vegetation water content in modeling?lightning-caused forest fire occurrences. ISPRS International?Journal of Geo-Information, v.8, p.143. doi: 10.3390/ijgi8030143 

  2. Abraham, J., Dowling, K. and Florentine, S. (2017) The unquantified?risk of post-fire metal concentration in soil: a review. Water, Air,?& Soil Pollution, v.228, p.1-33. doi: 10.1007/s11270-017-3338-0 

  3. Abram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J., Clarke,?H., Dowdy, A.J., Sharples, J.J., Nolan, R.H., Zhang, T. and?Wooster, M.J. (2021) Connections of climate change and?variability to large and extreme forest fires in southeast Australia.?Communications Earth & Environment, v.2, p.8. doi: 10.1038/s43247-020-00065-8 

  4. Agbeshie, A.A., Abugre, S., Atta-Darkwa, T. and Awuah, R. (2022)?A review of the effects of forest fire on soil properties. Journal of?Forestry Research, v.33, p.1419-1441. doi: 10.1007/s11676-022-01475-4 

  5. Agegnehu, G., Srivastava, A.K. and Bird, M.I. (2017) The role of?biochar and biochar-compost in improving soil quality and crop?performance: A review. Applied soil ecology, v.119, p.156-170.?doi: 10.1016/j.apsoil.2017.06.008 

  6. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N.,?Mohan, D., Vithanage, M., Lee, S.S. and Ok, Y.S. (2014)?Biochar as a sorbent for contaminant management in soil and?water: a review. Chemosphere, v.99, p.19-33. doi: 10.1016/j.chemosphere.2013.10.071 

  7. Akdemir, E.A., Battye, W.H., Myers, C.B. and Aneja, V.P. (2022)?Estimating NH 3 and PM 2.5 emissions from the Australia mega?wildfires and the impact of plume transport on air quality in?Australia and New Zealand. Environmental Science: Atmospheres,?v.2, p.634-646. doi: 10.1039/d1ea00100k 

  8. Alauzis, M.a.V., Mazzarino, M.a.J., Raffaele, E. and Roselli, L.a.?(2004) Wildfires in NW Patagonia: long-term effects on a?Nothofagus forest soil. Forest Ecology and Management, v.192,?p.131-142. doi: 10.1016/j.foreco.2003.11.014 

  9. Alexakis, D., Kokmotos, I., Gamvroula, D. and Varelidis, G. (2021)?Wildfire effects on soil quality: Application on a suburban area?of West Attica (Greece). Geosciences Journal, v.25, p.243-253.?doi: 10.1007/s12303-020-0011-1 

  10. Alexakis, D.E. (2020) Contaminated land by wildfire effect on?ultramafic soil and associated human health and ecological risk.?Land, v.9, p.409. doi: 10.3390/land9110409 

  11. Aponte, C., de Groot, W.J. and Wotton, B.M. (2016) Forest fires and?climate change: causes, consequences and management options.?International Journal of Wildland Fire, v.25, p.i-ii. doi: 10.1071/wfv25n8_fo 

  12. Ashworth, D., Shaw, G., Butler, A. and Ciciani, L. (2003) Soil?transport and plant uptake of radio-iodine from near-surface?groundwater. Journal of Environmental Radioactivity, v.70, p.99-114. doi: 10.1016/s0265-931x(03)00121-8 

  13. Badia, D., Marti, C., Aguirre, A.J., Aznar, J.M., Gonzalez-Perez, J.,?De la Rosa, J., Leon, J., Ibarra, P. and Echeverria, T. (2014)?Wildfire effects on nutrients and organic carbon of a Rendzic?Phaeozem in NE Spain: changes at cm-scale topsoil. Catena,?v.113, p.267-275. doi: 10.1016/j.catena.2013.08.002 

  14. Bae, H., Choung, S. and Jeong, J. (2022) A New Approach on?Adsorption and Transport of Cesium in Organic Matter-rich Soil?and Groundwater Environments Changed by Wildfires. Journal?of Korean Society on Water Environment, v.38, p.10-18. [Korean?Literature] doi: 10.15681/KSWE.2022.38.1.10 

  15. Bar, S., Parida, B.R., Roberts, G., Pandey, A.C., Acharya, P. and?Dash, J. (2021) Spatio-temporal characterization of landscape?fire in relation to anthropogenic activity and climatic variability?over the Western Himalaya, India. GIScience & Remote?Sensing, v.58, p.281-299. doi: 10.1080/15481603.2021.1879495 

  16. Bodi, M.B., Martin, D.A., Balfour, V.N., Santin, C., Doerr, S.H.,?Pereira, P., Cerda, A. and Mataix-Solera, J. (2014) Wildland fire?ash: production, composition and eco-hydro-geomorphic effects.?Earth-Science Reviews, v.130, p.103-127. doi: 10.1016/j.earscirev.2013.12.007 

  17. Bormann, B.T., Homann, P.S., Darbyshire, R.L. and Morrissette,?B.A. (2008) Intense forest wildfire sharply reduces mineral soil?C and N: the first direct evidence. Canadian Journal of Forest?Research, v.38, p.2771-2783. doi: 10.1139/x08-136 

  18. Bouzidi, A., Souahi, F. and Hanini, S. (2010) Sorption behavior of?cesium on Ain Oussera soil under different physicochemical?conditions. Journal of Hazardous Materials, v.184, p.640-646.?doi: 10.1016/j.jhazmat.2010.08.084 

  19. Bryant, R., Doerr, S. and Helbig, M. (2005) Effect of oxygen?deprivation on soil hydrophobicity during heating. International?Journal of Wildland Fire, v.14, p.449-455. doi: 10.1071/wf05035 

  20. Caon, L., Vallejo, V.R., Ritsema, C.J. and Geissen, V. (2014) Effects?of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, v.139, p.47-58. doi: 10.1016/j.earscirev.2014.09.001 

  21. Certini, G. (2005) Effects of fire on properties of forest soils: a?review. Oecologia, v.143, p.1-10. doi: 10.1007/s00442-004-1788-8 

  22. Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. and Rumpel, C.?(2011) Wildfire effects on soil organic matter quantity and?quality in two fire-prone Mediterranean pine forests. Geoderma,?v.167, p.148-155. doi: 10.1016/j.geoderma.2011.09.005 

  23. Choung, S., Um, W., Kim, M. and Kim, M.-G. (2013) Uptake?mechanism for iodine species to black carbon. Environmental?science & technology, v.47, p.10349-10355. doi: 10.1021/es401570a 

  24. Dai, J., Zhang, M., Hu, Q., Huang, Y., Wang, R. and Zhu, Y. (2009)?Adsorption and desorption of iodine by various Chinese soils: II.?Iodide and iodate. Geoderma, v.153, p.130-135. doi: 10.1016/j.geoderma.2009.07.020 

  25. de Koning, A. and Comans, R.N. (2004) Reversibility of radiocaesium?sorption on illite. Geochimica et cosmochimica acta, v.68,?p.2815-2823. doi: 10.1016/j.gca.2003.12.025 

  26. DeBano, L.F. (1991) The effect of fire on soil properties. U.S.?Department of Agriculture, Forest Service, Intermountain Research?Station. p. 151-156. 

  27. Dijkstra, J., Durrant, T., San-Miguel-Ayanz, J. and Veraverbeke, S.?(2022) Anthropogenic and lightning fire incidence and burned?area in Europe. Land, v.11, p.651. doi: 10.3390/land11050651 

  28. Dimitriadou, S., Katsanou, K., Charalabopoulos, S. and Lambrakis,?N. (2018) Interpretation of the factors defining groundwater?quality of the site subjected to the wildfire of 2007 in Ilia?prefecture, South-Western Greece. Geosciences, v.8, p.108. doi: 10.3390/geosciences8040108 

  29. Doerr, S., Shakesby, R., Blake, W., Chafer, C., Humphreys, G. and?Wallbrink, P. (2006) Effects of differing wildfire severities on?soil wettability and implications for hydrological response. Journal?of Hydrology, v.319, p.295-311. doi: 10.1016/j.jhydrol.2005.06.038 

  30. Dumat, C., Cheshire, M., Fraser, A., Shand, C. and Staunton, S.?(1997) The effect of removal of soil organic matter and iron on?the adsorption of radiocaesium. European Journal of Soil Science,?v.48, p.675-683. doi: 10.1111/j.1365-2389.1997.tb00567.x 

  31. Ebel, B.A., Moody, J.A. and Martin, D.A. (2012) Hydrologic?conditions controlling runoff generation immediately after wildfire.?Water Resources Research, v.48. doi: 10.1029/2011wr011470 

  32. Eljarrat, E. and Barcelo, D. (2003) Priority lists for persistent?organic pollutants and emerging contaminants based on their?relative toxic potency in environmental samples. TrAC Trends in?Analytical Chemistry, v.22, p.655-665. doi: 10.1016/s0165-9936(03)01001-x 

  33. Fernandez-Marcos, M.L. (2022) Potentially Toxic Substances and?Associated Risks in Soils Affected by Wildfires: A Review.?Toxics, v.10, p.31. doi: 10.3390/toxics10010031 

  34. Flannigan, M., Wotton, B., Marshall, G., De Groot, W., Johnston, J.,?Jurko, N. and Cantin, A. (2016) Fuel moisture sensitivity to?temperature and precipitation: climate change implications. Climatic?Change, v.134, p.59-71. doi: 10.1007/s10584-015-1521-0 

  35. Fukui, M., Fujikawa, Y. and Satta, N. (1996) Factors affecting?interaction of radioiodide and iodate species with soil. Journal of?Environmental Radioactivity, v.31, p.199-216. doi: 10.1016/0265-931x(95)00039-d 

  36. Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W.,?Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D. and Burke,?I.T. (2015) Caesium incorporation and retention in illite?interlayers. Applied Clay Science, v.108, p.128-134. doi: 10.1016/j.clay.2015.02.008 

  37. Fultz, L.M., Moore-Kucera, J., Dathe, J., Davinic, M., Perry, G.,?Wester, D., Schwilk, D.W. and Rideout-Hanzak, S. (2016) Forest?wildfire and grassland prescribed fire effects on soil?biogeochemical processes and microbial communities: Two case?studies in the semi-arid Southwest. Applied Soil Ecology, v.99,?p.118-128. doi: 10.1016/j.apsoil.2015.10.023 

  38. Gaffney, J.S., Marley, N.A. and Clark, S.B. (1996) Humic and fulvic?acids and organic colloidal materials in the environment. ACS?Symposium Series, v.651, p.2-16. doi: 10.1021/bk-1996-0651.ch001 

  39. Galambos, M., Kufcakova, J. and Rajec, P. (2009) Adsorption of?cesium on domestic bentonites. Journal of Radioanalytical and?Nuclear Chemistry, v.281, p.485-492. doi: 10.1007/s10967-009-0026-6 

  40. Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J.,?Long-Fournel, M. and Lampin, C. (2013) A review of the main?driving factors of forest fire ignition over Europe. Environmental?management, v.51, p.651-662. doi: 10.1007/s00267-012-9961-z 

  41. Gao, C., He, J., Cong, J., Zhang, S. and Wang, G. (2018) Impact of?forest fires generated black carbon deposition fluxes in Great?Hinggan Mountains (China). Land degradation & development,?v.29, p.2073-2081. doi: 10.1002/ldr.2837 

  42. Giannakopoulou, F., Gasparatos, D., Haidouti, C. and Massas, I.?(2012) Sorption behavior of cesium in two Greek soils: effects of?Cs initial concentration, clay mineralogy, and particle-size?fraction. Soil and Sediment Contamination: An International?Journal, v.21, p.937-950. doi: 10.1080/15320383.2012.714418 

  43. Giannakopoulou, F., Haidouti, C., Chronopoulou, A. and Gasparatos,?D. (2007) Sorption behavior of cesium on various soils under?different pH levels. Journal of Hazardous Materials, v.149,?p.553-556. doi: 10.1016/j.jhazmat.2007.06.109 

  44. Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G. and?Knicker, H. (2004) The effect of fire on soil organic matter-a?review. Environment international, v.30, p.855-870. doi: 10.1016/j.envint.2004.02.003 

  45. Guo, F., Su, Z., Tigabu, M., Yang, X., Lin, F., Liang, H. and Wang,?G. (2017) Spatial modelling of fire drivers in urban-forest?ecosystems in China. Forests, v.8, p.180. doi: 10.3390/f8060180 

  46. Hakem, N., Al Mahamid, I., Apps, J. and Moridis, G. (2000)?Sorption of cesium and strontium on Hanford soil. Journal of?Radioanalytical and Nuclear Chemistry, v.246, p.275-278. doi: 10.1023/a:1006701902891 

  47. Halofsky, J.E., Peterson, D.L. and Harvey, B.J. (2020) Changing?wildfire, changing forests: the effects of climate change on fire?regimes and vegetation in the Pacific Northwest, USA. Fire?Ecology, v.16, p.1-26. doi: 10.1186/s42408-019-0062-8 

  48. Hamilton, T.F., Martinelli, R.E., Kehl, S.R., Hayes, M.H., Smith,?I.J., Peters, S.K., Tamblin, M.W., Schmitt, C.L. and Hawk, D.?(2016) A preliminary assessment on the use of biochar as a soil?additive for reducing soil-to-plant uptake of cesium isotopes in?radioactively contaminated environments. Journal of Radioanalytical?and Nuclear Chemistry, v.307, p.2015-2020. doi: 10.1007/s10967-015-4520-8 

  49. Hoover, K. and Hanson, L.A. (2023) Wildfire statistics, IF10244,?Congressional Research Service, Washington, D.C., U.S. 

  50. Hou, X., Hansen, V., Aldahan, A., Possnert, G., Lind, O.C. and?Lujaniene, G. (2009) A review on speciation of iodine-129 in the?environmental and biological samples. Analytica Chimica Acta,?v.632, p.181-196. doi: 10.1016/j.aca.2008.11.013 

  51. Hou, X., Povinec, P.P., Zhang, L., Shi, K., Biddulph, D., Chang, C.C., Fan, Y., Golser, R., Hou, Y. and Jeskovsky, M. (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic?speciation, sources, and budget. Environmental science &?technology, v.47, p.3091-3098. doi: 10.1021/es304460k 

  52. Hrelja, I., Sestak, I. and Bogunovic, I. (2020) Wildfire impacts on?soil physical and chemical properties-a short review of recent?studies. Agriculturae Conspectus Scientificus, v.85, p.293-301. 

  53. Huang, W., Hu, Y., Chang, Y., Liu, M., Li, Y., Ren, B. and Shi, S.?(2018) Effects of fire severity and topography on soil black?carbon accumulation in boreal forest of Northeast China. Forests,?v.9, p.408. doi: 10.3390/f9070408 

  54. Iglesias, T., Cala, V. and Gonzalez, J. (1997) Mineralogical and?chemical modifications in soils affected by a forest fire in the?Mediterranean area. Science of the Total Environment, v.204,?p.89-96. doi: 10.1016/s0048-9697(97)00173-3 

  55. IPCC (2023) Summary for Policymakers. In: Climate Change 2023:?Synthesis Report, Intergovernmental Panel on Climate Change,?Geneva, Switzerland. 

  56. Jaffe, D.A., O'Neill, S.M., Larkin, N.K., Holder, A.L., Peterson,?D.L., Halofsky, J.E. and Rappold, A.G. (2020) Wildfire and?prescribed burning impacts on air quality in the United States.?Journal of the Air & Waste Management Association, v.70,?p.583-615. doi: 10.1080/10962247.2020.1749731 

  57. Jeon, S., Choung, S., Han, W.S., Jang, K.-S., Shin, W. and Hwang,?J. (2017) Physicochemical and Adsorptive Properties of Black?Carbon for Radioactive Cesium under Various Combustion?Conditions and Tree Species. Journal of Korean Society on?Water Environment, v.33, p.689-695. [Korean Literature] doi: 10.15681/KSWE.2017.33.6.689 

  58. Jones, R., Chambers, J.C., Johnson, D.W., Blank, R.R. and Board,?D.I. (2015) Effect of repeated burning on plant and soil carbon?and nitrogen in cheatgrass (Bromus tectorum) dominated?ecosystems. Plant and Soil, v.386, p.47-64. doi: 10.1007/s11104-014-2242-2 

  59. Jovanovic, V.S., Ilic, M., Markovic, M., Mitic, V., Mandic, S.N. and?Stojanovic, G. (2011) Wild fire impact on copper, zinc, lead and?cadmium distribution in soil and relation with abundance in?selected plants of Lamiaceae family from Vidlic Mountain?(Serbia). Chemosphere, v.84, p.1584-1591. doi: 10.1016/j.chemosphere.2011.05.048 

  60. Kaiser, M., Ellerbrock, R. and Gerke, H. (2008) Cation exchange?capacity and composition of soluble soil organic matter fractions.?Soil Science Society of America Journal, v.72, p.1278-1285. doi: 10.2136/sssaj2007.0340 

  61. Kaplan, D.I., Serne, R.J., Parker, K.E. and Kutnyakov, I.V. (2000)?Iodide sorption to subsurface sediments and illitic minerals.?Environmental Science & Technology, v.34, p.399-405. doi: 10.1021/es990220g 

  62. Khandaker, S., Toyohara, Y., Kamida, S. and Kuba, T. (2018)?Adsorptive removal of cesium from aqueous solution using?oxidized bamboo charcoal. Water Resources and Industry, v.19,?p.35-46. doi: 10.1016/j.wri.2018.01.001 

  63. Kim, E.-J., Oh, J.-E. and Chang, Y.-S. (2003) Effects of forest fire?on the level and distribution of PCDD/Fs and PAHs in soil.?Science of the Total Environment, v.311, p.177-189. doi: 10.1016/s0048-9697(03)00095-0 

  64. Kim, S.J., Lim, C.-H., Kim, G.S., Lee, J., Geiger, T., Rahmati, O.,?Son, Y. and Lee, W.-K. (2019) Multi-temporal analysis of forest?fire probability using socio-economic and environmental variables.?Remote Sensing, v.11, p.86. doi: 10.3390/rs11010086 

  65. Koarashi, J., Atarashi-Andoh, M., Matsunaga, T., Sato, T., Nagao, S.?and Nagai, H. (2012) Factors affecting vertical distribution of?Fukushima accident-derived radiocesium in soil under different?land-use conditions. Science of the Total Environment, v.431,?p.392-401. doi: 10.1016/j.scitotenv.2012.05.041 

  66. Korea Forest Service (2021) 2020 Basic Forest Statistics, 11-1400000-000069-10, Korea Forest Service. [Korean Literature] 

  67. Korea Forest Service (2023) 2022 Statistical yearbook of forest fire,?11-1400000-000424-10, Korea Forest Service. [Korean Literature] 

  68. Kutiel, P. and Naveh, Z. (1987) The effect of fire on nutrients in a?pine forest soil. Plant and Soil, v.104, p.269-274. doi: 10.1007/bf02372541 

  69. Kuzyakov, Y., Bogomolova, I. and Glaser, B. (2014) Biochar stability?in soil: decomposition during eight years and transformation as?assessed by compound-specific 14C analysis. Soil Biology and?Biochemistry, v.70, p.229-236. doi: 10.1016/j.soilbio.2013.12.021 

  70. Lewis, S.A., Robichaud, P.R., Hudak, A.T., Strand, E.K., Eitel, J.U.?and Brown, R.E. (2021) Evaluating the Persistence of Post-Wildfire Ash: A Multi-Platform Spatiotemporal Analysis. Fire,?v.4, p.68. doi: 10.3390/fire4040068 

  71. Li, J., Zhou, H., Wang, Y., Xie, X. and Qian, K. (2017) Sorption and?speciation of iodine in groundwater system: The roles of organic?matter and organic-mineral complexes. Journal of contaminant?hydrology, v.201, p.39-47. doi: 10.1016/j.jconhyd.2017.04.008 

  72. Lim, J.H. (2000) Forest Fire and Meteorology of Eastern Korea.?Korean Journal of Agricultural and Forest Meteorology, v.2,?p.62-67. [Korean Literature] 

  73. Litton, C.M. and Santelices, R. (2003) Effect of wildfire on soil?physical and chemical properties in a Nothofagus glauca forest,?Chile. Revista Chilena de Historia Natural, v.76, p.529-542. doi: 10.4067/s0716-078x2003000400001 

  74. Liu, Y., Goodrick, S. and Heilman, W. (2014) Wildland fire?emissions, carbon, and climate: Wildfire-climate interactions.?Forest Ecology and Management, v.317, p.80-96. doi: 10.1016/j.foreco.2013.02.020 

  75. Lopez-Macias, R., Cobos-Gasca, V., Cabanas-Vargas, D. and?Rendon von Osten, J. (2019) Presence and spatial distribution of?polynuclear aromatic hydrocarbons (PAHs) in groundwater of?Merida City, Yucatan, Mexico. Bulletin of environmental?contamination and toxicology, v.102, p.538-543. doi: 10.1007/s00128-019-02580-7 

  76. Maliszewska-Kordybach, B. (1999) Sources, concentrations, fate?and effects of polycyclic aromatic hydrocarbons (PAHs) in the?environment. Part A: PAHs in air. Polish journal of environmental?studies, v.8, p.131-136. 

  77. Mansilha, C., Carvalho, A., Guimaraes, P. and Espinha Marques, J.?(2014) Water quality concerns due to forest fires: Polycyclic?aromatic hydrocarbons (PAH) contamination of groundwater?from mountain areas. Journal of Toxicology and Environmental?Health, Part A, v.77, p.806-815. doi: 10.1080/15287394.2014.909301 

  78. Mansilha, C., Duarte, C.G., Melo, A., Ribeiro, J., Flores, D. and?Marques, J.E. (2019) Impact of wildfire on water quality in?Caramulo Mountain ridge (Central Portugal). Sustainable Water?Resources Management, v.5, p.319-331. doi: 10.1007/s40899-017-0171-y 

  79. Mansilha, C., Melo, A., Martins, Z.E., Ferreira, I.M., Pereira, A.M.?and Espinha Marques, J. (2020) Wildfire effects on groundwater?quality from springs connected to small public supply systems in?a peri-urban forest area (Braga Region, NW Portugal). Water,?v.12, p.1146. doi: 10.3390/w12041146 

  80. Mansoor, S., Farooq, I., Kachroo, M.M., Mahmoud, A.E.D., Fawzy,?M., Popescu, S.M., Alyemeni, M., Sonne, C., Rinklebe, J. and?Ahmad, P. (2022) Elevation in wildfire frequencies with respect?to the climate change. Journal of Environmental management,?v.301, p.113769. doi: 10.1016/j.jenvman.2021.113769 

  81. Martinez, J., Vega-Garcia, C. and Chuvieco, E. (2009) Human-caused wildfire risk rating for prevention planning in Spain.?Journal of environmental management, v.90, p.1241-1252. doi: 10.1016/j.jenvman.2008.07.005 

  82. McClure, C.D. and Jaffe, D.A. (2018) Investigation of high ozone?events due to wildfire smoke in an urban area. Atmospheric?Environment, v.194, p.146-157. doi: 10.1016/j.atmosenv.2018.09.021 

  83. Meneses, B.M., Reis, R., Vale, M.J. and Saraiva, R. (2015) Land use?and land cover changes in Zezere watershed (Portugal)-Water?quality implications. Science of the Total Environment, v.527,?p.439-447. doi: 10.1016/j.scitotenv.2015.04.092 

  84. Muller, M.M. and Vacik, H. (2017) Characteristics of lightnings?igniting forest fires in Austria. Agricultural and Forest Meteorology,?v.240, p.26-34. doi: 10.1016/j.agrformet.2017.03.020 

  85. Munoz, C., Paulino, L., Monreal, C. and Zagal, E. (2010) Greenhouse?gas (CO2 and N2O) emissions from soils: a review. Chilean?journal of agricultural research, v.70, p.485-497. doi: 10.4067/s0718-58392010000300016 

  86. Muramatsu, Y., Uchida, S., Sriyotha, P. and Sriyotha, K. (1990)?Some considerations on the sorption and desorption phenomena?of iodide and iodate on soil. Water, Air, and Soil Pollution, v.49,?p.125-138. doi: 10.1007/bf00279516 

  87. Murphy, J., Johnson, D., Miller, W., Walker, R., Carroll, E. and?Blank, R. (2006) Wildfire effects on soil nutrients and leaching?in a Tahoe Basin watershed. Journal of environmental Quality,?v.35, p.479-489. doi: 10.2134/jeq2005.0144 

  88. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D. and Tiller, K.?(1997) Cadmium sorption and transport in variable charge soils:?a review. Journal of Environmental Quality, v.26, p.602-617. doi: 10.2134/jeq1997.00472425002600030004x 

  89. Nakamaru, Y., Ishikawa, N., Tagami, K. and Uchida, S. (2007) Role?of soil organic matter in the mobility of radiocesium in?agricultural soils common in Japan. Colloids and Surfaces A:?Physicochemical and Engineering Aspects, v.306, p.111-117.?doi: 10.1016/j.colsurfa.2007.01.014 

  90. Nakao, A., Ogasawara, S., Sano, O., Ito, T. and Yanai, J. (2014)?Radiocesium sorption in relation to clay mineralogy of paddy?soils in Fukushima, Japan. Science of the total environment,?v.468, p.523-529. doi: 10.1016/j.scitotenv.2013.08.062 

  91. Neff, J., Harden, J. and Gleixner, G. (2005) Fire effects on soil?organic matter content, composition, and nutrients in boreal?interior Alaska. Canadian journal of forest research, v.35,?p.2178-2187. doi: 10.1139/x05-154 

  92. Neina, D. (2019) The role of soil pH in plant nutrition and soil?remediation. Applied and environmental soil science, v.2019,?p.1-9. doi: 10.1155/2019/5794869 

  93. Park, S.-M., Alessi, D.S. and Baek, K. (2019) Selective adsorption?and irreversible fixation behavior of cesium onto 2: 1 layered?clay mineral: A mini review. Journal of hazardous materials,?v.369, p.569-576. doi: 10.1016/j.jhazmat.2019.02.061 

  94. Paton-Walsh, C., Jones, N.B., Wilson, S.R., Haverd, V., Meier, A.,?Griffith, D.W. and Rinsland, C.P. (2005) Measurements of trace?gas emissions from Australian forest fires and correlations with?coincident measurements of aerosol optical depth. Journal of?Geophysical Research: Atmospheres, v.110. doi: 10.1029/2005jd006202 

  95. Pennino, M.J., Leibowitz, S.G., Compton, J.E., Beyene, M.T. and?LeDuc, S.D. (2022) Wildfires can increase regulated nitrate, arsenic,?and disinfection byproduct violations and concentrations in public?drinking water supplies. Science of the Total Environment,?v.804, p.149890. doi: 10.1016/j.scitotenv.2021.149890 

  96. Pereira, P. and Ubeda, X. (2010) Spatial distribution of heavy metals?released from ashes after a wildfire. Journal of Environmental?Engineering and Landscape Management, v.18, p.13-22. doi: 10.3846/jeelm.2010.02 

  97. Pipiska, M., Ballova, S., Fristak, V., Duriska, L., Hornik, M.,?Demcak, S., Holub, M. and Soja, G. (2020) Assessment of?pyrogenic carbonaceous materials for effective removal of?radiocesium. Key Engineering Materials, v.838, p.103-110. doi: 10.4028/www.scientific.net/kem.838.103 

  98. Reid, C.E., Brauer, M., Johnston, F.H., Jerrett, M., Balmes, J.R. and?Elliott, C.T. (2016) Critical review of health impacts of wildfire?smoke exposure. Environmental health perspectives, v.124,?p.1334-1343. doi: 10.1289/ehp.1409277 

  99. Reid, J., Koppmann, R., Eck, T. and Eleuterio, D. (2005) A review?of biomass burning emissions part II: intensive physical?properties of biomass burning particles. Atmospheric chemistry?and physics, v.5, p.799-825. doi: 10.5194/acp-5-799-2005 

  100. Rhoades, C.C., Nunes, J.P., Silins, U. and Doerr, S.H. (2019) The?influence of wildfire on water quality and watershed processes:?New insights and remaining challenges. International Journal of?Wildland Fire, v.28, p.721-725. doi: 10.1071/wfv28n10_fo 

  101. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Liberta, G.,?Artes-Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari,?D., Pfeiffer, H., Grecchi, R., Onida, M. and Loffler, P. (2022)?Forest Fires in Europe, Middle East and North Africa 2021,?JRC130846, Publications Office of the European Union,?Luxembourg. 

  102. San-Miguel-Ayanz, J., Moreno, J.M. and Camia, A. (2013) Analysis?of large fires in European Mediterranean landscapes: Lessons?learned and perspectives. Forest Ecology and Management,?v.294, p.11-22. doi: 10.1016/j.foreco.2012.10.050 

  103. Santin, C., Knicker, H., Fernandez, S., Menendez-Duarte, R. and?Alvarez, M.A. (2008) Wildfires influence on soil organic matter?in an Atlantic mountainous region (NW of Spain). Catena, v.74,?p.286-295. doi: 10.1016/j.catena.2008.01.001 

  104. Schlegel, M.L., Reiller, P., Mercier-Bion, F., Barre, N. and Moulin,?V. (2006) Molecular environment of iodine in naturally iodinated?humic substances: Insight from X-ray absorption spectroscopy.?Geochimica et Cosmochimica Acta, v.70, p.5536-5551. doi: 10.1016/j.gca.2006.08.026 

  105. Schmidt, M.W., Skjemstad, J., Gehrt, E. and Kogel-Knabner, I.?(1999) Charred organic carbon in German chernozemic soils.?European Journal of Soil Science, v.50, p.351-365. doi: 10.1046/j.1365-2389.1999.00236.x 

  106. Shao, H., Wei, Y., Wei, C., Zhang, F. and Li, F. (2021) Insight into?cesium immobilization in contaminated soil amended with?biochar, incinerated sewage sludge ash and zeolite. Environmental?Technology & Innovation, v.23, p.101587. doi: 10.1016/j.eti.2021.101587 

  107. Shetaya, W., Young, S., Watts, M., Ander, E. and Bailey, E. (2012)?Iodine dynamics in soils. Geochimica et Cosmochimica Acta,?v.77, p.457-473. doi: 10.1016/j.gca.2011.10.034 

  108. Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H. and Burrows, M.?(2021) Rapid warming has resulted in more wildfires in?northeastern Australia. Science of the total environment, v.771,?p.144888. doi: 10.1016/j.scitotenv.2020.144888 

  109. Silva, V., Pereira, J.L., Campos, I., Keizer, J.J., Goncalves, F. and?Abrantes, N. (2015) Toxicity assessment of aqueous extracts of?ash from forest fires. Catena, v.135, p.401-408. doi: 10.1016/j.catena.2014.06.021 

  110. Smith, H.G., Sheridan, G.J., Lane, P.N., Nyman, P. and Haydon, S.?(2011) Wildfire effects on water quality in forest catchments: A?review with implications for water supply. Journal of Hydrology,?v.396, p.170-192. doi: 10.1016/j.jhydrol.2010.10.043 

  111. Sojinu, O.S., Sonibare, O.O. and Zeng, E.Y. (2011) Concentrations?of polycyclic aromatic hydrocarbons in soils of a mangrove?forest affected by forest fire. Toxicological & Environmental?Chemistry, v.93, p.450-461. doi: 10.1080/02772248.2010.532130 

  112. Steinhauser, G., Brandl, A. and Johnson, T.E. (2014) Comparison of?the Chernobyl and Fukushima nuclear accidents: a review of the?environmental impacts. Science of the total environment, v.470,?p.800-817. doi: 10.1016/j.scitotenv.2013.10.029 

  113. Tameta, Y., Tamura, R., Kimura, M., Sasamoto, M., Kamei-Ishikawa, N. and Ito, A. (2021) Effect of dissolved soil organic?matter on cesium adsorption by zeolite and illite. Journal of?Environmental Management, v.289, p.112477. doi: 10.1016/j.jenvman.2021.112477 

  114. Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q. and Lu,?L. (2022) Spatio-temporal analysis of forest fire events in the?Margalla Hills, Islamabad, Pakistan using socio-economic and?environmental variable data with machine learning methods.?Journal of Forestry Research, v.33, p.183-194. doi: 10.1007/s11676-021-01354-4 

  115. Tournassat, C., Gaucher, E.C., Fattahi, M. and Grambow, B. (2007)?On the mobility and potential retention of iodine in the Callovian-Oxfordian formation. Physics and Chemistry of the Earth, Parts?A/B/C, v.32, p.539-551. doi: 10.1016/j.pce.2005.12.004 

  116. Turco, M., Bedia, J., Di Liberto, F., Fiorucci, P., von Hardenberg, J.,?Koutsias, N., Llasat, M.-C., Xystrakis, F. and Provenzale, A.?(2016) Decreasing fires in mediterranean Europe. PLoS one,?v.11, p.e0150663. doi: 10.1371/journal.pone.0150663 

  117. Ulery, A.L., Graham, R.C., Goforth, B.R. and Hubbert, K.R. (2017)?Fire effects on cation exchange capacity of California forest and?woodland soils. Geoderma, v.286, p.125-130. doi: 10.1016/j.geoderma.2016.10.028 

  118. Varela, M., Benito, E. and De Blas, E. (2005) Impact of wildfires on?surface water repellency in soils of northwest Spain. Hydrological?Processes: An International Journal, v.19, p.3649-3657. doi: 10.1002/hyp.5850 

  119. Viegas, D.X., Simeoni, A., Xanthopoulos, G., Rossa, C., Ribeiro,?L.M., Pita, L.P., Stipanicev, D., Zinoviev, A., Weber, R., Dold, J.,?Caballero, D. and San-Miguel-Ayanz, J. (2009) Recent forest fire?related accidents in Europe, JRC 56107, Publications Office of?the European Union, Luxembourg. 

  120. Wang, Y. and Anderson, K.R. (2010) An evaluation of spatial and?temporal patterns of lightning-and human-caused forest fires in?Alberta, Canada, 1980-2007. International Journal of Wildland?Fire, v.19, p.1059-1072. doi: 10.1071/wf09085 

  121. Wang, Y., Xu, Z. and Zhou, Q. (2014) Impact of fire on soil gross?nitrogen transformations in forest ecosystems. Journal of Soils?and Sediments, v.14, p.1030-1040. doi: 10.1007/s11368-014-0879-3 

  122. Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Morales,?J., Bishop, D.A., Balch, J.K. and Lettenmaier, D.P. (2019)?Observed impacts of anthropogenic climate change on wildfire?in California. Earth's Future, v.7, p.892-910. doi: 10.1029/2019ef001210 

  123. WMO (2020) State of the Global Climate 2019, WMO-No. 1248,?World Meteorological Organization, Geneva, Switzerland. 

  124. WMO (2022) State of the Global Climate 2021, WMO-No. 1290,?World Meteorological Organization, Geneva, Switzerland. 

  125. WMO (2023) State of the Global Climate 2022, WMO-No. 1316,?World Meteorological Organization, Geneva, Switzerland. 

  126. Woods, S.W. and Balfour, V.N. (2010) The effects of soil texture?and ash thickness on the post-fire hydrological response from?ash-covered soils. Journal of Hydrology, v.393, p.274-286. doi: 10.1016/j.jhydrol.2010.08.025 

  127. Wotawa, G. and Trainer, M. (2000) The influence of Canadian forest?fires on pollutant concentrations in the United States. Science,?v.288, p.324-328. doi: 10.1126/science.288.5464.324 

  128. Xu, C., Miller, E.J., Zhang, S., Li, H.-P., Ho, Y.-F., Schwehr, K.A.,?Kaplan, D.I., Otosaka, S., Roberts, K.A. and Brinkmeyer, R.?(2011) Sequestration and remobilization of radioiodine (129I) by?soil organic matter and possible consequences of the remedial?action at Savannah River Site. Environmental science &?technology, v.45, p.9975-9983. doi: 10.1021/es201343d 

  129. Xu, R., Zhao, A. and Ji, G. (2003) Effect of low-molecular-weight?organic anions on surface charge of variable charge soils. Journal?of Colloid and Interface Science, v.264, p.322-326. doi: 10.1016/s0021-9797(03)00475-2 

  130. Xu, S., Freeman, S.P., Hou, X., Watanabe, A., Yamaguchi, K. and?Zhang, L. (2013) Iodine isotopes in precipitation: temporal?responses to 129I emissions from the Fukushima nuclear?accident. Environmental science & technology, v.47, p.10851-10859. doi: 10.1021/es401527q 

  131. Yamagishi, T., Nishikiori, K., Kurimoto, Y. and Yamauchi, S. (2019)?Cesium-adsorption mechanisms of woody charcoal discussed on?the basis of its functional groups and nanostructure. Journal of?wood science, v.65, p.1-9. doi: 10.1186/s10086-019-1805-5 

  132. Yoschenko, V., Ohkubo, T. and Kashparov, V. (2018) Radioactive?contaminated forests in Fukushima and Chernobyl. Journal of?Forest Research, v.23, p.3-14. doi: 10.1080/13416979.2017.1356681 

  133. Zavala, L.M.M., de Celis Silvia, R. and Lopez, A.J. (2014) How?wildfires affect soil properties. A brief review. Cuadernos de?investigacion geografica: Geographical Research Letters, p.311-331. doi: 10.18172/cig.2522 

  134. Zhang, D., Lu, L., Lu, T., Jin, M., Lin, J., Liu, X. and Zhao, H.?(2018) Application of a rice husk-derived biochar in soil?immobilization of iodide (I-) and iodate (IO 3-). Journal of soils?and sediments, v.18, p.1540-1547. doi: 10.1007/s11368-017-1864-4 

  135. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S.,?Pei, J. and Huang, H. (2013) Using biochar for remediation of?soils contaminated with heavy metals and organic pollutants.?Environmental Science and Pollution Research, v.20, p.8472-8483. doi: 10.1007/s11356-013-1659-0 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로