$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구
Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay 원문보기

자원환경지질 = Economic and environmental geology, v.56 no.5, 2023년, pp.515 - 532  

황정환 (한국원자력연구원 저장처분기술개발부) ,  김정우 (한국원자력연구원 저장처분기술개발부) ,  한원식 (연세대학교 지구시스템과학과) ,  윤원우 (연세대학교 지구시스템과학과) ,  이지용 (연세대학교 지구시스템과학과) ,  최승규 (한국원자력연구원 저장처분성능검증부)

초록
AI-Helper 아이콘AI-Helper

벤토나이트는 고준위 방사성폐기물 처분을 위한 심층처분 시스템에서 처분용기와 암반 사이를 메우는 완충재로 고려되는 팽창성 점토이다. 벤토나이트는 높은 양이온교환능과 비표면적을 가지고 있기 때문에, 처분용기로부터 핵종이 누출될 경우, 수착하여 암반으로의 유출을 지연시키는 역할을 한다. 본 연구에서는 여러 선행연구에서 8종류의 벤토나이트를 사용하여 수행된 U, Am, Se, Eu 핵종의 수착실험 및 모델 자료를 취합하고, 각 연구에서 설정된 실험 조건들을 기반으로 열역학적 수착모델의 특성을 평가하였다. 핵종과 벤토나이트 간의 수착 거동 해석에 중요한 역할을 하는 열역학적 수착모델은 벤토나이트의 광물학적 특성뿐만 아니라 핵종 농도, 용액의 이온강도, 주 양이온, 온도, 고액비, 용존 탄산 농도 등 세부적인 실험 조건과 밀접하게 연관되어 있는 것으로 확인되었다. 이러한 결과는 특정 실험 조건에서 수행된 수착실험 및 모델의 최적화로 제안되는 수착 반응식과 반응상수가 다양한 환경 조건에 적용하기에 불확실성이 크다는 것을 의미한다. 따라서, 심층처분 시스템에 적용가능한 열역학적 수착모델을 구축하기 위해서는 현장 조사 및 실험이 함께 수행되어야 한다.

Abstract AI-Helper 아이콘AI-Helper

Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific ...

주제어

참고문헌 (57)

  1. Baeyens, B. and Bradbury, M.H. (1997) A mechanistic description?of Ni and Zn sorption on Na-montmorillonite Part I: Titration?and sorption measurements. Journal of Contaminant Hydrology,?v.27, p.199-222. doi: 10.1016/S0169-7722(97)00007-7 

  2. Birkholzer, J., Houseworth, J. and Tsang, C.-F. (2012) Geologic?disposal of high-level radioactive waste: Status, key issues, and?trends. Annual Review of Environment and Resources, v.37,?p.79-106. doi: 10.1146/annurev-environ-090611-143314 

  3. Boult, K.A., Cowper, M.M, Heath, T.G., Sato, H., Shibutani, T. and?Yui, M. (1998) Towards an understanding of the sorption of U?(VI) and Se (IV) on sodium bentonite. Journal of Contaminant?Hydrology, v.35, p.141-150. doi: 10.1016/S0169-7722(98)00122-3 

  4. Bradbury, M.H. and Baeyens, B. (1997) A mechanistic description?of Ni and Zn sorption on Na-montmorillonite Part II: modelling.?Journal of Contaminant Hydrology, v.27, p.223-248. doi: 10.1016/S0169-7722(97)00007-7 

  5. Bradbury, M.H. and Baeyens, B. (2000) A generalised sorption?model for the concentration dependent uptake of caesium by?argillaceous rocks. Journal of Contaminant Hydrology, v.42,?p.141-163. doi: 10.1016/S0169-7722(99)00094-7 

  6. Bradbury, M.H. and Baeyens, B. (2002) Sorption of Eu on Na-and?Ca-montmorillonites: experimental investigations and modelling?with cation exchange and surface complexation. Geochimica et?Cosmochimica Acta, v.66, no.13, p.2325-2334. doi: 10.1016/S0016-7037(02)00841-4 

  7. Bradbury, M.H. and Baeyens, B. (2005) Modelling the sorption of?Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV),?Th(IV), Np(V) and U(VI) on montmorillonite: Linear free?energy relationships and estimates of surface binding constants?for some selected heavy metals and actinides. Geochimica et?Cosmochimica Acta, v.69, p.875-892. doi: 10.1016/j.gca.2004.07.020 

  8. Bradbury, M.H. and Baeyens, B. (2006) Modelling sorption data for?the actinides Am (III), Np (V) and Pa (V) on montmorillonite.?Radiochimica Acta, v.94, p.619-625. doi: 10.1524/ract.2006.94.9-11.619 

  9. Bradbury, M.H. and Baeyens, B. (2011) Predictive sorption modelling?of Ni (II), Co (II), Eu (IIII), Th (IV) and U (VI) on MX-80?bentonite and Opalinus Clay: A "bottom-up" approach. Applied?Clay Science, v.52, p.27-33. doi: 10.1016/j.clay.2011.01.022 

  10. Chen, Z.-G., Tang, C.-S., Shen, Z., Liu, Y.-M. and Shi, B. (2017)?The geotechnical properties of GMZ buffer/backfill material used?in high-level radioactive nuclear waste geological repository: a?review. Environmental Earth Sciences, v.76, 270. doi: 10.1007/s12665-017-6580-2 

  11. Chen, Z., Jin, Q., Guo, Z., Montavon, G. and Wu, W. (2014) Surface?complexation modeling of Eu (III) and phosphate on Na-bentonite: Binary and ternary adsorption systems. Chemical?Engineering Journal, v.256, p.61-68. doi: 10.1016/j.cej.2014.06.096 

  12. Delany, J. and Lundeen, S. (1991) The LLNL thermochemical data?base--revised data and file format for the EQ3/6 package,?Lawrence Livermore National Lab., CA (United States). 

  13. Dincer, I. and Acar, C. (2015) A review on clean energy solutions?for better sustainability. International Journal of Energy Research,?v.39, p.585-606. doi: 10.1002/er.3329 

  14. Dzombak, D.A. and Morel, F.M. (1991) Surface complexation?modeling: hydrous ferric oxide. John Wiley & Sons. 

  15. Fernandes, M.M., Baeyens, B. and Bradbury, M.H. (2008) The?influence of carbonate complexation on lanthanide/actinide?sorption on montmorillonite. Radiochimica Acta, v.96, p.691-697. doi: 10.1524/ract.2008.1555 

  16. Fernandes, M.M., Baeyens, B., Dahn, R., Scheinost, A. and Bradbury,?M.H. (2012) U (VI) sorption on montmorillonite in the absence?and presence of carbonate: A macroscopic and microscopic?study. Geochimica et Cosmochimica Acta, v.93, p.262-277. doi: 10.1016/j.gca.2012.04.017 

  17. Fuller, A.J., Shaw, S., Peacock, C.L., Trivedi, D., Small, J.S.,?Abrahamsen, L.G. and Burke, I.T. (2014) Ionic strength and pH?dependent multi-site sorption of Cs onto a micaceous aquifer?sediment. Applied Geochemistry, v.40, p.32-42. doi: 10.1016/j.apgeochem.2013.10.017 

  18. Gaines, G.L. and Thomas, H.C. (1953) Adsorption studies on clay?minerals. II. A formulation of the thermodynamics of exchange?adsorption. The Journal of Chemical Physics, v.21, no.4, p.714-718. doi: 10.1063/1.1698996 

  19. Gao, P., Zhang, D., Jin, Q., Chen, Z., Wang, D., Guo, Z. and Wu, W.?(2021) Multi-scale study of Am (III) adsorption on Gaomiaozi?bentonite: Combining experiments, modeling and DFT calculations.?Chemical Geology, 120414. doi: 10.1016/j.chemgeo.2021.120414 

  20. Grambow, B., Fattahi, M., Montavon, G., Moisan, C. and Giffaut, E.?(2006) Sorption of Cs, Ni, Pb, Eu (III), Am (III), Cm, Ac (III),?Tc (IV), Th, Zr, and U (IV) on MX 80 bentonite: an experimental?approach to assess model uncertainty. Radiochimica Acta, v.94,?p.627-636. doi: 10.1524/ract.2006.94.9.627 

  21. Guillaumont, R. and Mompean, F.J. (2003) Update on the chemical?thermodynamics of uranium, neptunium, plutonium, americium?and technetium, 5. Elsevier Amsterdam. 

  22. Guo, Z., Xu, J, Shi, K, Tang, Y, Wu, W. and Tao, Z. (2009) Eu (III)?adsorption/desorption on Na-bentonite: experimental and modeling?studies. Colloids and Surfaces A: Physicochemical and Engineering?Aspects, v.339, p.126-133. doi: 10.1016/j.colsurfa.2009.02.007 

  23. IAEA (2003) Scientific and Technical Basis for the Geological?Disposal of Radioactive Wastes. Technical Reports Series No. 413. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna,?Austria. 

  24. IAEA (2009) Geological Disposal of Radioactive Waste: Technological Implications for Retrievability. Nuclear Energy Series?No. NW-T-1.19. INTERNATIONAL ATOMIC ENERGY?AGENCY, Vienna, Austria. 

  25. IAEA (2011) Geological Disposal Facilities for Radioactive Waste,?Specific safety guide No. SSG-14. INTERNATIONAL ATOMIC?ENERGY AGENCY, Vienna, Austria. 

  26. IAEA (2022) Status and Trends in Spent Fuel and Radioactive?Waste Management. INTERNATIONAL ATOMIC ENERGY?AGENCY, Vienna, Austria. 

  27. KAERI (2008) Korean reference HLW disposal system, Korea?Atomic Energy Research Institute, Daejeon, South Korea. 

  28. Kale, R.C. and Ravi, K. (2019) Influence of thermal history on swell?pressures of compacted bentonite. Process Safety and Environmental Protection, v.123, p.199-205. doi: 10.1016/j.psep.2019.01.004 

  29. Kaufhold, S. and Dohrmann, R. (2016) Distinguishing between?more and less suitable bentonites for storage of high-level?radioactive waste. Clay Minerals, v.51, p.289-302. doi: 10.1180/claymin.2016.051.2.14 

  30. Korichi, S. and Bensmaili, A. (2009) Sorption of uranium (VI) on?homoionic sodium smectite experimental study and surface?complexation modeling. Journal of hazardous materials, v.169,?p.780-793. doi: 10.1016/j.jhazmat.2009.04.014 

  31. Kowal-Fouchard, A., Drot, R., Simoni, E. and Ehrhardt, J. (2004)?Use of spectroscopic techniques for uranium (VI)/montmorillonite?interaction modeling. Environmental Science and Technology,?v.38, p.1399-1407. doi: 10.1021/es0348344 

  32. Kumar, S., Pente, A., Bajpai, R., Kaushik, C. and Tomar, B. (2013)?Americium sorption on smectite-rich natural clay from granitic?ground water. Applied geochemistry, v.35, p.28-34. doi: 10.1016/j.apgeochem.2013.05.016 

  33. Lee, J.O., Choi, H. and Kim, G.Y. (2017) Numerical simulation studies?on predicting the peak temperature in the buffer of an HLW?repository. International Journal of Heat and Mass Transfer,?v.115, p.192-204. doi: 10.1016/j.ijheatmasstransfer.2017.07.039 

  34. Liu, S., Jiang, Y., Yu, S., Tan, W., Zhang, T. and Lin, Z. (2022)?Electric power supply structure transformation model of?China for peaking carbon dioxide emissions and achieving?carbon neutrality. Energy Reports, v.8, p.541-548. doi: 10.1016/j.egyr.2022.10.085 

  35. Marty, N.C.M., Fritz, B., Clement, A. and Michau, N. (2010)?Modelling the long term alteration of the engineered bentonite?barrier in an underground radioactive waste repository. Applied?Clay Science, v.47, p.82-90. doi: 10.1016/j.clay.2008.10.002 

  36. Missana, T., Garcia-Gutierrez, M. and Alonso, U. (2004) Kinetics?and irreversibility of cesium and uranium sorption onto bentonite?colloids in a deep granitic environment. Applied Clay Science,?v.26, p.137-150. doi: 10.1016/j.clay.2003.09.008 

  37. Missana, T., Alonso, U. and Garcia-Gutierrez, M. (2009) Experimental?study and modelling of selenite sorption onto illite and smectite?clays. Journal of Colloid and Interface Science, v.334, p.132-138.?doi: 10.1016/j.jcis.2009.02.059 

  38. Missana, T., Benedicto, A., Garcia-Gutierrez, M. and Alonso, U.?(2014) Modeling cesium retention onto Na-, K-and Ca-smectite:?Effects of ionic strength, exchange and competing cations on the?determination of selectivity coefficients. Geochimica et Cosmochimica Acta, v.128, p.266-277. doi: 10.1016/j.gca.2013.10.007 

  39. Missana, T., Alonso, U. and Garcia-Gutierrez, M. (2021) Evaluation?of component additive modelling approach for europium adsorption?on 2: 1 clays: Experimental, thermodynamic databases, and models.?Chemosphere, v.272, 129877. doi: 10.1016/j.chemosphere.2021.129877 

  40. MOTIE (2021) The 2nd Management of High-Level Radioactive?Waste, Ministry of Trade, Industry and Energy, Sejong, South?Korea. 

  41. Muller, J., Abdelouas, A., Ribet, S. and Grambow, B. (2012) Sorption?of selenite in a multi-component system using the "dialysis?membrane" method. Applied geochemistry, v.27, p.2524-2532.?doi: 10.1016/j.apgeochem.2012.07.023 

  42. NEA (2003) Engineered Barrier Systems and the Safety of Deep?Geological Repositories: State of the Art Report. OECD, Nuclear?Energy Agency 

  43. Pabalan, R.T. and Turner, D.R. (1996) Uranium (6+) sorption on?montmorillonite: Experimental and surface complexation modeling?study. Aquatic Geochemistry, v.2, p.203-226. doi: 10.1007/BF01160043 

  44. Sadekin, S., Zaman, S., Mahfuz, M. and Sarkar, R. (2019) Nuclear?power as foundation of a clean energy future: A review. Energy?Procedia, v.160, p.513-518. doi: 10.1016/j.egypro.2019.02.200 

  45. Samper, J., Zheng, L., Montenegro, L., Fernandez, A.M. and Rivas,?P. (2008) Coupled thermo-hydro-chemical models of compacted?bentonite after FEBEX in situ test. Applied Geochemistry, v.23,?p.1186-1201. doi: 10.1016/j.apgeochem.2007.11.010 

  46. Schnurr, A., Marsac, R., Rabung, T., Lutzenkirchen, J. and Geckeis,?H. (2015) Sorption of Cm (III) and Eu (III) onto clay minerals?under saline conditions: Batch adsorption, laser-fluorescence?spectroscopy and modeling. Geochimica et Cosmochimica Acta,?v.151, p.192-202. doi: 10.1016/j.gca.2014.11.011 

  47. Shi, K., Ye, Y., Guo, N., Guo, Z. and Wu, W. (2014) Evaluation of?Se (IV) removal from aqueous solution by GMZ Na-bentonite:?batch experiment and modeling studies. Journal of Radio-analytical and Nuclear Chemistry, v.299, p.583-589. doi: 10.1007/s10967-013-2807-1 

  48. Silverio, L.B. and de Queiroz Lamas, W. (2011) An analysis of?development and research on spent nuclear fuel reprocessing.?Energy Policy, v.39, p.281-289. doi: 10.1016/j.enpol.2010.09.040 

  49. Steefel, C.I., Carroll, S., Zhao, P. and Roberts, S. (2003) Cesium?migration in Hanford sediment: a multisite cation exchange?model based on laboratory transport experiments. Journal of?Contaminant Hydrology, v.67, p.219-246. doi: 10.1016/S0169-7722(03)00033-0 

  50. Stockmann, M., Fritsch, K., Bok, F., Steudtner, R., Muller, K.,?Nebelung, C., Brendler, V. and Stumpf, T. (2022) New insights?into U (VI) sorption onto montmorillonite from batch sorption?and spectroscopic studies at increased ionic strength. Science?of The Total Environment, v.806, 150653. doi: 10.1016/j.scitotenv.2021.150653 

  51. Tertre, E., Berger, G., Simoni, E., Castet, S., Giffaut, E., Loubet, M.?and Catalette, H. (2006) Europium retention onto clay minerals?from 25 to 150 C: experimental measurements, spectroscopic?features and sorption modelling. Geochimica et Cosmochimica?Acta, v.70, p.4563-4578. doi: 10.1016/j.gca.2006.06.1568 

  52. Tournassat, C., Tinnacher, R.M., Grangeon, S. and Davis, J.A.?(2018) Modeling uranium (VI) adsorption onto montmorillonite?under varying carbonate concentrations: A surface complexation?model accounting for the spillover effect on surface potential.?Geochimica et Cosmochimica Acta, v.220, p.291-308. doi: 10.1016/j.gca.2017.09.049 

  53. Yang, Z., Huang, L., Lu, Y., Guo, Z., Montavon, G. and Wu, W.?(2010) Temperature effect on U (VI) sorption onto Na-bentonite.?Radiochimica Acta, v.98, p.785-791. doi: 10.1524/ract.2010.1784 

  54. Zavarin, M., Chang, E., Wainwright, H., Parham, N., Kaukuntla, R.,?Zouabe, J, Deinhart, A., Genetti, V., Shipman, S. and Bok, F. (2022)?Community data mining approach for surface complexation?database development. Environmental Science and Technology,?v.56, p.2827-2838. doi: 10.1021/acs.est.1c07109 

  55. Zhan, L., Bo, Y., Lin, T. and Fan, Z. (2021) Development and?outlook of advanced nuclear energy technology. Energy Strategy?Reviews, v.34, 100630. doi: 10.1016/j.esr.2021.100630 

  56. Zheng, L., Rutqvist, J., Xu, H. and Birkholzer, J.T. (2017) Coupled?THMC models for bentonite in an argillite repository for nuclear?waste: Illitization and its effect on swelling stress under high?temperature. Engineering Geology, v.230, p.118-129. doi: 10.1016/j.enggeo.2017.10.002 

  57. Zheng, L., Samper, J. and Montenegro, L. (2011) A coupled THC?model of the FEBEX in situ test with bentonite swelling and?chemical and thermal osmosis. Journal of Contaminant Hydrology,?v.126, p.45-60. doi: 10.1016/j.jconhyd.2011.06.003 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로