최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기지구물리와 물리탐사 = Geophysics and geophysical exploration, v.26 no.4, 2023년, pp.199 - 210
장성형 (한국지질자원연구원 해저지질에너지연구본부) , 이동훈 (한국지질자원연구원 해저지질에너지연구본부) , 김병엽 (한국지질자원연구원 해저지질에너지연구본부)
The physical properties of rocks in reservoirs change after CO2 injection, we modeled a reservoir with a transition zone within which the physical properties change linearly. The function of the Wolf reflection coefficient consists of the velocity ratio of the upper and lower layers, the frequency, ...
Addison, P. S., 2018, Introduction to redundancy rules: the continuous wavelet transform comes of age, Phillosophical?Transasctions of the Royal Society A, 376(2126), 1-5, doi:?http://doi.org/10.1098/rsta.2017.0258
Allen, J., 1977, Short Time Spectral Analysis, Synthesis, and?Modification by Discrete Fourier Transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3),?235-238, doi: https://doi.org/10.1109/TASSP.1977.1162950
Chakraborty, A., and Okaya, D., 1995, Frequency-time decomposition of seismic data using wavelet-based methods, Geophysics, 60(6), 1906-1916, doi: https://doi.org/10.1190/1.1443922
Deng, L., and Yu, D., 2014, Deep Learning: Methods and?Applications, Foundations and Trends in Signal Processing,?7(3-4), 197-387, doi: http://doi.org/10.1561/2000000039
Dutta, N. C., and Ode, H., 1983, Seismic reflections from a?gas-water contact, Geophysics, 48(2), 148-162, doi: https://dx.doi.org/10.1190/1.1441454
Fang, W., Fu, L., Zhang, M., and Li, Z., 2021, Seismic data?interpolation based on U-Net with texture loss, Geophysics,?86(1), V41-V54, doi: https://dx.doi.org/10.1190/geo2019-0615.1
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., Courville, A., and Bengio, Y., 2020,?Generative adversarial networks, Commun. ACM, 63(11),?139-144, doi: https://doi.org/10.1145/3422622
Goupillaud, P., Grossmann, A., and Morlet, A., 1984, Cycleoctave and related transforms in seismic signal analysis, Geoexploration, 23(1), 85-102, doi: https://dx.doi.org/10.1016/0016-7142(84)90025-5
Harsuki, R., and Alkhalifah, T., 2022, StorSeismic: A new paradigm in deep learning for seismic processing, IEEE Transactions on Geoscience and Remote sensing, 60, 1-15, doi:?https://doi.org/10.1109/TGRS.2022.3216660
He, Q., and Wang, Y., 2021, Reparameterized full-waveform?inversion using deep neural networks, Geophysics, 86(1),?V1-V13, doi: https://doi.org/10.1190/geo2019-0382.1
Jia, Y., and Ma, J., 2017, What can machine learning do for?seismic data processing? An interpolation application, Geophysics, 82(3), V163-V177, doi: https://dx.doi.org/10.1190/geo2016-0300.1
Kaur, H., Pham, N., and Formel, S., 2020, Seismic data interpolation using deep learnging with generative adversarial networks, Geophysical Prospecting, 69(11), 307-326, doi:?https://doi.org/10.1111/1365-2478.13055
Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, ImageNet classification with deep convolutional neural networks, Communications of the ACM, 60(6), 84-90, doi:?https://dx.doi.org/10.1145/3065386
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R.?E., Hubbard, W., and Jackel, L. D., 1989, Backpropagation?applied to handwritten zip code recognition, Neural Computation, 1(4), 541-551, doi: https://doi.org/10.1162/neco.1989.1.4.541
LeCun, Y., Bengio, Y., and Hinton, G. E., 2015, Deep learning,?Nature, 521, 436-444, doi: https://doi.org/10.1038/nature14539
Li, H., Li, X., Dong, H., Han, F., and Wang, C., 2022, Full-waveform inversion with adversarial losses via deep learning, Journal of Applied Geophysics, 205, 1-11, doi: https://doi.org/10.1016/j.jappgeo.2022.104763
Li, Y., and Ma, Z., 2021, Deep learning-based noise reduction?for seismic data, Journal of Physics: Conference Series, 1861?012011 IWAACE 2021, doi: https://doi.org/10.1088/1742-6596/1861/1/012011
Liner, C. L., and Bodmann, B. G., 2010, The Wolf ramp:?Reflection characteristics of a transition layer, Geophysics,?75(5), A31-A35, doi: https://doi.org/10.1190/1.3476312
Marfurt, K. J., and Kirlin, R. L., 2001, Narrow-band spectral?analysis and thin-bed tuning, Geophysics, 66(4), 1274-1283,?doi: https://doi.org/10.1190/1.1487075
Mosser, L., Dubrule, O., and Blunt, M. J., 2020, Stochastic seismic waveform inversion using generative adversarial networks?as a geological prior, Mathematical Geosciences, 52(1), 53-79,?doi: https://doi.org/10.1007/s11004-019-09832-6
Naeini, E. Z., and Prindle, K., 2018, Machine learning and?learning from machines, The Leading Edge, 37(12), 886-893.?doi: https://doi.org/10.1190/tle37120886.1
Nithyashree, V., 2021, https://github.com/Nithyashree-2022/VGG-19-for-Rock-Paper-and-Scissors-classification (July 18,?2023 Accessed)
Oliveira, D. A., Ferreira, R. S., Silva, R., and Brazil, E. V.,?2018, Interpolating seismic data with conditional generative?adversarial networks. IEEE Geoscience and Remote Sensing?Letters, 15(12), 1952-1956, doi: https://doi.org/10.1109/LGRS.2018.2866199
Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T., 2019, Deep learning for low-frequency extrapolation?from multioffset seismic data, Geophysics, 84(6), R989-R1001, doi: https://doi.org/10.1190/geo2018-0884.1
Ozawa, M., 2023, Automated picking of seismic first arrivals?using a single-to multidomain self-trained network, Geophysics, 89(1), WA25-WA38, doi: https://doi.org/10.1190/geo2022-0666.1
Park, J., Choi, J., Seol, S. J., Byun, J., and Kim, Y., 2021, A?method for adequate selection of training data sets to reconstruct seismic data using a convolutional U-Net, Geophysics,?86(5), V375-V388, doi: https://doi.org/10.1190/geo2019-0708.1
Partyka, G. A., Gridley, J., and Lopez, J., 1999, Interpretational?applications of spectral decomposition in reservoir characterization, The Leading Edge, 18(3), 353-360, doi: https://doi.org/10.1190/1.1438295
Roth, G., and Tarantola, A., 1994, Neural networks and inversion of seismic data, J. Geophys. Res.: Solid Earth, 99(B4),?6753-6768, doi: https://doi.org/10.1029/93JB01563
Sezawa, K., and Kanai, K., 1935, Discontinuity in dispersion?curves of Rayleigh-waves, Proceedings of the Imperial?Academy, 11, 13-14, https://doi.org/10.2183/pjab1912.11.13
Sun, B., and Alkhalifah, T., 2019, ML-descent: An optimization?algorithm for full-waveform inversion using machine learning, Geophysics, 85(6), R477-R492, doi: https://doi.org/10.1190/geo2019-0641.1
Sun, H., Sun, Y., Nammour, R., Rivera, C., Williamson, P., and?Demanet, L., 2023, Learning with real data without real?labels: a strategy for extrapolated full-waveform inversion?with field data, Geophysical Journal International, 235(2),?1761-1777, doi: https://doi.org/10.1093/gji/ggad330
Tsai, K., Hu, W., Wu, X., Chen, J., and Han, Z., 2019, Automatic First Arrival Picking via Deep Learning with Human?Interactive Learning, IEEE Transactions on Geoscience and?Remote Sensing, 58(2), 1380-1391, doi: https://ieeexplore.ieee.org/abstract/document/8880673
Wang, J., Xiao, Z., Liu, C., Zhao, D., and Yao, Z., 2019, Deep?Learning for Picking Seismic Arrival Times, J. Geophys.?Res. Solid Earth, 124(7), 6612-6624, doi: https://doi.org/10.1029/2019JB017536
Widess, M. B., 1982, Quantifying resolving power of seismic?systems, Geophysics, 47(8), 1160-1173, doi: https://doi.org/10.1190/1.1441379
Wolf, A., 1937, The reflection of elastic waves from transition?layers of variable velocity, Geophysics, 2(4), 357-363, doi:?https://doi.org/10.1190/1.1438104
Yang, F., and Ma, J., 2019, Deep-learning inversion: A next-generation seismic velocity model building method, Geophysics, 84(4), R583-R599, doi: https://doi.org/10.1190/geo2018-0249.1
Yu, S., Ma, J., and Wang, W., 2019, Deep learning for denoising, Geophysics, 84(6), V333-V350, doi: https://doi.org/10.1190/geo2018-0668.1
Zeiler, D., and Fergus, R., 2014, Visualizing and understanding?convolutional networks, Springer International Publishing,?818-833, https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
Zhang, M., Liu, Y., and Chen, Y., 2019, Unsupervised seismic?random noise attenuation based on deep convolutional neural?network, IEEE Access, 7, 179810-179822, doi: https://doi.org/10.1109/ACCESS.2019.2959238
Zhong, T., Cheng, M., Dong, X., and Wu, N., 2021, Seismic?random noise attenuation by applying multiscale denoising?convolutional neural network, IEEE Trans. Geoscience Remote?Sens, 60, 1-13, doi: https://doi.org/10.1109/TGRS.2021.3095922
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.