$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

CO2 주입 후 저류층은 암석물리 특성이 변하므로 이 연구에서는 저류층을 물성이 선형으로 변하는 전이대 지층모델로 구성한다. 울프 반사계수 함수는 전이대 상하지층의 속도비, 주파수, 전이대 두께 함수로 구성되어 있어 저류층 두께나 해저면 전이대 두께를 추정하는데 활용할 수 있다. 이 연구에서는 심층학습을 이용하여 전이대 두께를 예측 방법을 제안한다. 심층학습을 적용하기 위해 사암 저류층, 셰일 덮개암으로 구성한 인공 전이대 지층모델에 두께에 따른 울프 반사계수 모델링을 수행하고 시간-스펙트럼 영상자료를 확보하였다. 두께별 시간-주파수 스펙트럼 영상과 중합단면도 트레이스에서 구한 시간-주파수 스펙트럼 비교로부터 구한 두께 추정결과는 항상 정확하게 전이대의 두께를 제시하지는 못하였다. 그러나 다양한 환경에서 학습자료를 확보하고 정확도를 높이면 현장자료적용이 가능할 것으로 본다.

Abstract AI-Helper 아이콘AI-Helper

The physical properties of rocks in reservoirs change after CO2 injection, we modeled a reservoir with a transition zone within which the physical properties change linearly. The function of the Wolf reflection coefficient consists of the velocity ratio of the upper and lower layers, the frequency, ...

Keyword

표/그림 (13)

참고문헌 (57)

  1. Addison, P. S., 2018, Introduction to redundancy rules: the continuous wavelet transform comes of age, Phillosophical?Transasctions of the Royal Society A, 376(2126), 1-5, doi:?http://doi.org/10.1098/rsta.2017.0258 

  2. Allen, J., 1977, Short Time Spectral Analysis, Synthesis, and?Modification by Discrete Fourier Transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3),?235-238, doi: https://doi.org/10.1109/TASSP.1977.1162950 

  3. Chakraborty, A., and Okaya, D., 1995, Frequency-time decomposition of seismic data using wavelet-based methods, Geophysics, 60(6), 1906-1916, doi: https://doi.org/10.1190/1.1443922 

  4. Cho, S. I., and Pyun, S. J., 2023, Comparison of CNN and?GAN-based Deep Learning Models for Ground Roll Suppression, Geophysics and Geophysical Exploration, 26(2),?37-51, doi: https://doi.org/10.7582/GGE.2023.26.2.037 (In?Korean with English abstract) 

  5. Clay, C. S., and Medwin, H., 1977, Acoustical oceanography:?Principal & applications, John Wiley & Sons Inc. doi: 10.1016/S0022-460X(78)80104-7 

  6. Deng, L., and Yu, D., 2014, Deep Learning: Methods and?Applications, Foundations and Trends in Signal Processing,?7(3-4), 197-387, doi: http://doi.org/10.1561/2000000039 

  7. Duchi, J., Hazna, E., and Singer, Y., 2011, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 12(7), 2121-2159,?doi: https://dx.doi.org/10.5555/1953048.2021068 

  8. Dutta, N. C., and Ode, H., 1983, Seismic reflections from a?gas-water contact, Geophysics, 48(2), 148-162, doi: https://dx.doi.org/10.1190/1.1441454 

  9. Fang, W., Fu, L., Zhang, M., and Li, Z., 2021, Seismic data?interpolation based on U-Net with texture loss, Geophysics,?86(1), V41-V54, doi: https://dx.doi.org/10.1190/geo2019-0615.1 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., Courville, A., and Bengio, Y., 2020,?Generative adversarial networks, Commun. ACM, 63(11),?139-144, doi: https://doi.org/10.1145/3422622 

  11. Goupillaud, P., Grossmann, A., and Morlet, A., 1984, Cycleoctave and related transforms in seismic signal analysis, Geoexploration, 23(1), 85-102, doi: https://dx.doi.org/10.1016/0016-7142(84)90025-5 

  12. Harsuki, R., and Alkhalifah, T., 2022, StorSeismic: A new paradigm in deep learning for seismic processing, IEEE Transactions on Geoscience and Remote sensing, 60, 1-15, doi:?https://doi.org/10.1109/TGRS.2022.3216660 

  13. He, K., Zhang, X., Ren, S., and Sun, J., 2016, Deep residual?learning for image recongnition, IEEE Conference on Computer Vision and Pattern Recognition, 770-778, doi: https://doi.org/10.1109/CVPR.2016.90 

  14. He, Q., and Wang, Y., 2021, Reparameterized full-waveform?inversion using deep neural networks, Geophysics, 86(1),?V1-V13, doi: https://doi.org/10.1190/geo2019-0382.1 

  15. Jia, Y., and Ma, J., 2017, What can machine learning do for?seismic data processing? An interpolation application, Geophysics, 82(3), V163-V177, doi: https://dx.doi.org/10.1190/geo2016-0300.1 

  16. Jo, J., and Ha, W., 2023, Deep-Learning Seismic Inversion?using Laplace-domain wavefields, Geophysics and Geophysical Exploration, 26(2), 84-93, doi: https://doi.org/10.7582/GGE.2023.26.2.084 (In Korean with English abstract) 

  17. Kaur, H., Pham, N., and Formel, S., 2020, Seismic data interpolation using deep learnging with generative adversarial networks, Geophysical Prospecting, 69(11), 307-326, doi:?https://doi.org/10.1111/1365-2478.13055 

  18. Kim, S., and Jun, H., 2022, The Use of Unsupervised Machine?Learning for the Attenuation of Seismic Noise, Geophysics?and Geophysical Exploration, 25(2), 71-84, doi: https://doi.org/10.7582/GGE.2022.25.2.071 

  19. Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, ImageNet classification with deep convolutional neural networks, Communications of the ACM, 60(6), 84-90, doi:?https://dx.doi.org/10.1145/3065386 

  20. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R.?E., Hubbard, W., and Jackel, L. D., 1989, Backpropagation?applied to handwritten zip code recognition, Neural Computation, 1(4), 541-551, doi: https://doi.org/10.1162/neco.1989.1.4.541 

  21. LeCun, Y., Bengio, Y., and Hinton, G. E., 2015, Deep learning,?Nature, 521, 436-444, doi: https://doi.org/10.1038/nature14539 

  22. Lewis, W., and Vigh, D., 2017, Deep learning prior models?from seismic images for full-waveform inversion. In: SEG?Technical Program Expanded Abstracts 2017, Society of?Exploration Geophysicist, 1512-1517, doi: https://doi.org/10.1190/segam2017-17627643.1 

  23. Li, H., Li, X., Dong, H., Han, F., and Wang, C., 2022, Full-waveform inversion with adversarial losses via deep learning, Journal of Applied Geophysics, 205, 1-11, doi: https://doi.org/10.1016/j.jappgeo.2022.104763 

  24. Li, Y., and Ma, Z., 2021, Deep learning-based noise reduction?for seismic data, Journal of Physics: Conference Series, 1861?012011 IWAACE 2021, doi: https://doi.org/10.1088/1742-6596/1861/1/012011 

  25. Liner, C. L., and Bodmann, B. G., 2010, The Wolf ramp:?Reflection characteristics of a transition layer, Geophysics,?75(5), A31-A35, doi: https://doi.org/10.1190/1.3476312 

  26. Liner, C., 2012, Elements of Seismic Dispersion: A Somewhat?Practical Guide to Frequency-Dependent Phenomena, Society of Exploration Geophysicists, 109-124, doi: https://doi.org/10.1190/1.9781560802952.ch6 

  27. Liu, J., and Marfurt, K. J., 2006, Thin bed thickness prediction?using peak instantaneous frequency, SEG/New Orleans annual?meeting, 968-972, doi: https://doi.org/10.1190/1.2370418 

  28. Ma, Y., and Luo, Y., 2018, Automatic first-arrival picking with?Reinforcement Learning, SEG Global Meeting Abstracts,?493-497, doi: https://doi.org/10.1190/IGC2018-121 

  29. Marfurt, K. J., and Kirlin, R. L., 2001, Narrow-band spectral?analysis and thin-bed tuning, Geophysics, 66(4), 1274-1283,?doi: https://doi.org/10.1190/1.1487075 

  30. Mosser, L., Dubrule, O., and Blunt, M. J., 2020, Stochastic seismic waveform inversion using generative adversarial networks?as a geological prior, Mathematical Geosciences, 52(1), 53-79,?doi: https://doi.org/10.1007/s11004-019-09832-6 

  31. Naeini, E. Z., and Prindle, K., 2018, Machine learning and?learning from machines, The Leading Edge, 37(12), 886-893.?doi: https://doi.org/10.1190/tle37120886.1 

  32. Nithyashree, V., 2021, https://github.com/Nithyashree-2022/VGG-19-for-Rock-Paper-and-Scissors-classification (July 18,?2023 Accessed) 

  33. Oliveira, D. A., Ferreira, R. S., Silva, R., and Brazil, E. V.,?2018, Interpolating seismic data with conditional generative?adversarial networks. IEEE Geoscience and Remote Sensing?Letters, 15(12), 1952-1956, doi: https://doi.org/10.1109/LGRS.2018.2866199 

  34. Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T., 2019, Deep learning for low-frequency extrapolation?from multioffset seismic data, Geophysics, 84(6), R989-R1001, doi: https://doi.org/10.1190/geo2018-0884.1 

  35. Ovcharenko, O., and Hou, S., 2020, Deep learning for seismic?data reconstruction: Opportunities and challenges, in Proc.?1st EAGE Digitalization Conference Exhibition, no. 1, 1-5,?doi: https://doi.org/10.3997/2214-4609.202032054 

  36. Ozawa, M., 2023, Automated picking of seismic first arrivals?using a single-to multidomain self-trained network, Geophysics, 89(1), WA25-WA38, doi: https://doi.org/10.1190/geo2022-0666.1 

  37. Park, J., Choi, J., Seol, S. J., Byun, J., and Kim, Y., 2021, A?method for adequate selection of training data sets to reconstruct seismic data using a convolutional U-Net, Geophysics,?86(5), V375-V388, doi: https://doi.org/10.1190/geo2019-0708.1 

  38. Partyka, G. A., Gridley, J., and Lopez, J., 1999, Interpretational?applications of spectral decomposition in reservoir characterization, The Leading Edge, 18(3), 353-360, doi: https://doi.org/10.1190/1.1438295 

  39. Plotnitskii, P., Alkhalifah, T., Ovcharenko, O., and Kazei, V.,?2019, Seismic model low wavenumber extrapolation by a?deep convolutional neural network, ASEG Extended Abstracts,?2nd Australasian Exploration Geoscience, 2019(1-5), doi:?https://doi.org/10.1080/22020586.2019.12073206 

  40. Ronneberger, O., Fischer, P., and Brox, T., 2015, U-Net, convolutional net-works for biomedical image segmentation, Proc.?Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.?Cham, Switzerland: Springer, 234-241, doi: https://doi.org/10.1007/978-3-319-24574-4_28 

  41. Roth, G., and Tarantola, A., 1994, Neural networks and inversion of seismic data, J. Geophys. Res.: Solid Earth, 99(B4),?6753-6768, doi: https://doi.org/10.1029/93JB01563 

  42. Sak, H., Senior, A., and Beaufays, F., 2014, Long short-term?memory based recurrent neural network architectures for?large vocabulary speech recognition, Proc. Interspeech, 338-342, doi: https://doi.org/10.21437/Interspeech.2014-80 

  43. Sezawa, K., and Kanai, K., 1935, Discontinuity in dispersion?curves of Rayleigh-waves, Proceedings of the Imperial?Academy, 11, 13-14, https://doi.org/10.2183/pjab1912.11.13 

  44. Simonyan, K., and Zisserman, A., 2015, Very deep convolutional networks for large-scale image recognition, 3rd International Conference on Learning Representations (ICLR?2015), 1-14, doi: https://doi.org/10.48550/arXiv.1409.1556 

  45. Sun, B., and Alkhalifah, T., 2019, ML-descent: An optimization?algorithm for full-waveform inversion using machine learning, Geophysics, 85(6), R477-R492, doi: https://doi.org/10.1190/geo2019-0641.1 

  46. Sun, H., Sun, Y., Nammour, R., Rivera, C., Williamson, P., and?Demanet, L., 2023, Learning with real data without real?labels: a strategy for extrapolated full-waveform inversion?with field data, Geophysical Journal International, 235(2),?1761-1777, doi: https://doi.org/10.1093/gji/ggad330 

  47. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., 2015,?Going deeper with convolutions, 2015 IEEE Conference on?Computer Vision and Pattern Recognition, 1-9, doi: https://doi.org/10.1109/CVPR.2015.7298594 

  48. Tsai, K., Hu, W., Wu, X., Chen, J., and Han, Z., 2019, Automatic First Arrival Picking via Deep Learning with Human?Interactive Learning, IEEE Transactions on Geoscience and?Remote Sensing, 58(2), 1380-1391, doi: https://ieeexplore.ieee.org/abstract/document/8880673 

  49. Wang, J., Xiao, Z., Liu, C., Zhao, D., and Yao, Z., 2019, Deep?Learning for Picking Seismic Arrival Times, J. Geophys.?Res. Solid Earth, 124(7), 6612-6624, doi: https://doi.org/10.1029/2019JB017536 

  50. Widess, M. B., 1982, Quantifying resolving power of seismic?systems, Geophysics, 47(8), 1160-1173, doi: https://doi.org/10.1190/1.1441379 

  51. Wolf, A., 1937, The reflection of elastic waves from transition?layers of variable velocity, Geophysics, 2(4), 357-363, doi:?https://doi.org/10.1190/1.1438104 

  52. Yang, F., and Ma, J., 2019, Deep-learning inversion: A next-generation seismic velocity model building method, Geophysics, 84(4), R583-R599, doi: https://doi.org/10.1190/geo2018-0249.1 

  53. Yeeh, Z., Park, J., Seol, S. J., Yoon, D., and Byun, J., 2023,?Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data, Geophysics and Geophysical?Exploration, 26(2), 62-72, doi: https://doi.org/10.7582/GGE.2023.26.2.062 (In Korean with English abstract) 

  54. Yu, S., Ma, J., and Wang, W., 2019, Deep learning for denoising, Geophysics, 84(6), V333-V350, doi: https://doi.org/10.1190/geo2018-0668.1 

  55. Zeiler, D., and Fergus, R., 2014, Visualizing and understanding?convolutional networks, Springer International Publishing,?818-833, https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53 

  56. Zhang, M., Liu, Y., and Chen, Y., 2019, Unsupervised seismic?random noise attenuation based on deep convolutional neural?network, IEEE Access, 7, 179810-179822, doi: https://doi.org/10.1109/ACCESS.2019.2959238 

  57. Zhong, T., Cheng, M., Dong, X., and Wu, N., 2021, Seismic?random noise attenuation by applying multiscale denoising?convolutional neural network, IEEE Trans. Geoscience Remote?Sens, 60, 1-13, doi: https://doi.org/10.1109/TGRS.2021.3095922 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로