$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구
Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.34 no.1, 2024년, pp.28 - 53  

천대성 (한국지질자원연구원 국토우주지질연구본부) ,  진광민 (한국지질자원연구원 국토우주지질연구본부) ,  신중호 (한국지질자원연구원 국토우주지질연구본부) ,  김유홍 (한국지질자원연구원 국토우주지질연구본부) ,  전석원 (서울대학교 공과대학 에너지시스템공학부)

초록
AI-Helper 아이콘AI-Helper

원자력발전에 따라 필수적으로 발생하는 고준위방사성폐기물은 원자력발전이 시행된 나라 내 처분이 원칙이다. 고준위방사성폐기물의 심층처분을 위한 처분 지역과 모암의 결정은 과학적 방법뿐만 아니라 정치, 경제, 사회적으로 중요한 이슈이다. 현재까지 전 세계적으로 처분 모암으로 고려되는 암종은 결정질암, 퇴적암인 이암, 화산암인 응회암, 암염 등이 있다. 그러나 국내의 경우 지질학적으로 암염을 제외한 다양한 암종이 복잡하게 분포하고 있다. 본 논문에서는 고준위방사성페기물처분장의 처분 모암에 대한 다양한 암종 연구의 예비결과와 함께 전국규모의 지질학적, 암석역학적 특성을 분석하였을 뿐만 아니라, 후보 암종에 대한 심부 시추조사 사례들을 통하여 특성을 검토하고 처분 모암으로서 다양한 암종들의 가능성을 제시하고자 하였다. 또한 전국규모의 광역적 특성 분석, 문헌 조사, 상세 사례분석 등을 통하여 고준위방사성폐기물 심층처분을 위한 후보 암종으로 결정질암인 쥐라기 화강암과 백악기 퇴적암 중진주층과 진동층을 도출하였다. 그러나 본 논문에서 도출된 후보 암종들에 대해 연구된 자료의 양이 적기 때문에 처분심도, 지역적 특성, 다학제적인 검토 등에 대한 추가적이고 상세한 분석이 수행된 후 신중히 처분 암종이 결정되어야 할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically...

주제어

표/그림 (27)

참고문헌 (37)

  1. Aladejare, A.E. and Wang, Y., 2017, Evaluation of rock property variability, Georisk: Assessment and management of risk for?engineered systems and geohazards, 11, 22-41.? 

  2. Chang, K.H., 1977, Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea (II). J. Geo. Soc. Korea, 14,?120-135.? 

  3. Cheon, D.S., Kihm, Y.H., Jin, K., Song, W.K., and Choi S., 2022a, A study on nationwide maps with geoenvironmental?information and geological characteristics of bedrock for HLW Disposal, Journal of the Korean Society of Mineral and?Energy Resources Engineers, 59(3), 276-292.? 

  4. Cheon, D.S., Park, E.S., Park, C., and Park C., 2008, A basic study for mechanical properties of domestic rocks and database?construction, Tunnel & Underground Space, 18(5), 317-327.? 

  5. Cheon, D.S., Song, W.K., Kihm, Y.H., Jin, K., and Choi, S., 2022b, A study on key parameters and distribution range in rock?mechanics for HLW geological disposal, Tunnel & Underground Space, 32(6), 530-548.? 

  6. Cheong, C. and Kim, N., 2012, Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula, Journal of?The Petrological Society of Korea, 21(2), 173-192.? 

  7. Cho, D.L. and Kwon, S.T., 1994, Hornblende Geobarometry of the Mesozoic Granitoids in South Korea and the Evolution of?Crustal Thickness, J. Geo. Soc. Korea, 30, 41-61.? 

  8. Cho, M., Kim, H., Lee, Y., Horie, K., and Hidaka, H., 2008, The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb Zircon age of a?tonalitic migmatite, Daeijak Island, western Gyeonggi massif, Geosciences Journal, 12, 1-16.? 

  9. Choi, S., Cheon, D.S., Jeong, H., and Jeon, S., 2021. Establishment of a basic DB of Korean intact rock properties applicable to site?characterization for HLW geological disposal, Tunnel & Underground Space, 31(2), 83-97.? 

  10. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the?Korean peninsula: new view, Earth-Science Reviews, 101, 225-249.? 

  11. Haghi, A.H., Chalaturnyk R., and Ghobadi, H., 2018, The state of stress in SW Iran and implications for hydraulic fracturing of a?naturally fractured carbonate reservoir, Int. J. Rock Mech. Min. Sci., 105, 28-43.? 

  12. Heidbach, O., Rajabi, M., Reiter K., and Ziegler, M., 2016, World Stress Map 2016, GFZ Data Service, doi:10.5880/WSM.2016.002.? 

  13. Hong, Y.K., 1987, Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea, Jour. Korean Inst.?Mining Geol., 20, 35-60.? 

  14. KGS, 2009, Geology and rock engineering for geotechnical engineers, Seoul, Korea, p. 719. 

  15. KIGAM, 2019, Development of nationwide geoenvironmental maps for HLW geological disposal, GP2017-009-2019, Daejeon,?Korea, p. 603.? 

  16. KIGAM, 2020, Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2020, Daejeon, Korea.? 

  17. KIGAM, 2021, Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2021, Daejeon,?Korea, p. 330.? 

  18. KIGAM, 2022, Research on rock properties in deep environment for HLW geological disposal, GP2020-002-2022, Daejeon, Korea, p. 108.? 

  19. Kihm, Y. and Hwang, J.H., 2009, Geological structures and deformation sequence of the eastern Gyeonggi masif, Bangsan-myeon,?Yanggu-gun, Gangwon-do, J. Geo. Soc. Korea, 45, 115-126.? 

  20. Kim, G.W. and Kim, S.J., 2006, Correlation between engineering properties of rocks in Korea, J. Eng. Geol., 16(1), 59-68.? 

  21. Kim, H., Synn, J.H., Park, C., Song, W.K., Park, E.S., Jung, B.K., Cheon, D.S., Bae, S., Choi, S.O., Chang, C. and Min, K.B., 2021,?Korea stress map 2020 using hydraulic fracturing and overcoring data, Tunnel & Underground Space, 31(3), pp. 145-166.? 

  22. Kim, H.J., Paik, I.S. and Huh, M., 2011a, Bird footprint-bearing deposits from the Cretaceous Haman Formation in the southern?Gyeongsang Basin: occurrences, taphonomy and paleoenvironments. J. Geo. Soc. Korea, 47, 97-122.? 

  23. Kim, J., Yi, K., Jeong, Y.J., and Cheong, C.S., 2011b, Geochronological and geochemical constraints on the petrogenesis of?Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20, 608-620.? 

  24. Kim, S.W., Lee, C., and Ryu, I.C., 2008, Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses?from the Myeongho Area in Northeast Yecheon Shear Zone, Econ. Environ. Geol., 41(3), 299-314.? 

  25. Lee, S.R., Cho, M., Yi, K., and Stern, R.A., 2000, Early Proterozoic granulites in central Korea: Tectonic correlation with Chinese?cratons, The Journal of Geology, 108, 729-738.? 

  26. Lee, Y.D. and Yang S.Y., 1990, Studies on Depositional History of Jinju Formation in Jinju - Sacheon Area , Korea - Sedimentological and Paleontological Studies, Journal of the Korean Earth Science Society, 11, 38-44.? 

  27. Nagra, 2016, Production, consumption and transport of gases in deep geological repositories according to the Swiss disposal?concept, Technical report 16-03, Wettingen, Switzerland, p. 148? 

  28. Nagra, 2017, KIGAM-Nagra workshop presentation.? 

  29. NEA, 2010, Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste: Review?and synthesis, NEA No.6184, Paris, France, p. 312? 

  30. Oh, C.W., 2012, The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic. The Journal of the?Petrological Society of Korea, 21, 59-87.? 

  31. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J., and Krishnan S., 2005, First Finding of Eclogite Facies Metamorphic Event in?South Korea and Its Correlation with the Dabie-Sulu Collision Belt in China, The Journal of Geology, 113, 226-232.? 

  32. Oh, C.W., Kim, S.W., and Williams, I.S., 2006, Spinel granulite in Odesan area, South Korea: Tectonic implications for the?collision between the North and South China blocks, Lithos, 92, 557-575.? 

  33. Seo, Y., Yun, H.S., Kim, D.G., and Kwon, O.I., 2016, Analysis on Physical and Mechanical Properties of Rock Mass in Korea. J.?Geo. Soc. Korea, 26, 593-600.? 

  34. SKB, 2004, Choice of rock excavation methods for the Swedish deep repository for spent nuclear fuel, R-04-62, Stockholm, Sweden, p. 146? 

  35. So, Y.H., Paik, I.S., Kim, H.J., and Kim, S.J., 2007, Cyclic deposits in the Haman Formation (Cretaceous) of the Gyeongsang?Supergroup at Sinsu Island, Sacheon, Korea: Occurrence and origin, J. Geo. Soc. Korea, 43, 1-19.? 

  36. Synn, J.H., Park, C., and Lee, B.J., 2013, Regional distribution pattern and geo-historical transition of in-situ stress fields in the?Korean Peninsula, Tunnel & Underground Space, 23(6), 457-469.? 

  37. Um, S.H., Choi, H.I., Son, J.D., Oh, J.H., Kwak, Y.H., Shin, S.C., and Yun H.S., 1983, Geological and geochemical studies on the?Gyeongsang supergroup in the Gyeongsang basin. Korea Institute of Energy and Resources, 36, p. 124? 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로