$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

광조사에 의한 실리콘 태양전지 열화 연구
Study of Light-induced Effect on Silicon Solar Cell from Wafer to Cell: A Review 원문보기

Current photovoltaic research = 한국태양광발전학회논문지, v.12 no.1, 2024년, pp.6 - 16  

심명섭 (신소재공학과, 고려대학교) ,  최동진 (에너지기술공동연구소, 고려대학교) ,  우명지 (신소재공학과, 고려대학교) ,  손지우 (신소재공학과, 고려대학교) ,  최영호 (에너지기술공동연구소, 고려대학교) ,  김동환 (신소재공학과, 고려대학교)

Abstract AI-Helper 아이콘AI-Helper

The efficiency of silicon solar cells is approaching a theoretical limit referred to as 'the state of the art'. Consequently, maintaining efficiency is more productive than pursuing improvements the last room for limiting efficiency. One of the primary considerations in silicon module conservation i...

주제어

표/그림 (5)

참고문헌 (61)

  1. M. Schmela, Global market outloolk. (2023). 

  2. A. Richter, M. Hermle, S. W. Glunz, Reassessment of the?Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE?Journal of Photovoltaics 3, 1184-1191 (2013). 

  3. NREL Best Research-Cell Efficiency Chart. 

  4. D. L. Staebler, C. R. Wronski, Reversible conductivity changes?in discharge-produced amorphous Si. Applied Physics Letters?31, 292-294 (1977). 

  5. H. Dersch, J. Stuke, J. Beichler, Light-induced dangling bonds?in hydrogenated amorphous silicon. Applied Physics Letters?38, 456-458 (1981). 

  6. M. Stutzmann, W. B. Jackson, C. C. Tsai, Light-induced?metastable defects in hydrogenated amorphous silicon: A?systematic study. Physical Review B 32, 23-47 (1985). 

  7. M. Ohsawa et al., The Role of Hydrogen in the Staebler-Wronski?Effect of a-Si:H. Japanese Journal of Applied Physics 24, L838?(1985). 

  8. X. Cheng, E. S. Marstein, C. C. You, H. Haug, M. D. Sabatino,?Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon?wafers. Energy Procedia 124, 275-281 (2017). 

  9. De Wolf, S., et al. "Very fast light-induced degradation of?a-Si:H/c-Si(100) interfaces." Physical Review B 83(23): 233301?(2011). 

  10. E. M. El Mhamdi, J. Holovsky, B. Demaurex, C. Ballif, S. De?Wolf, Is light-induced degradation of a-Si:H/c-Si interfaces?reversible? Applied Physics Letters 104, 252108 (2014). 

  11. R. L. Crabb, Photon Induced Degradation of Electron and?Proton Irradiated Silicon Solar Cells. IEEE Transactions on?Nuclear Science 20, 243-249 (1973). 

  12. H. Hashigami, Y. Itakura, T. Saitoh, Effect of illumination?conditions on Czochralski-grown silicon solar cell degradation.?Journal of Applied Physics 93, 4240-4245 (2003). 

  13. Soomin Kim et al., An Analysis of Light Induced Degradation?with Optical Source Properties in Boron-Doped P-Type Cz-Si?Solar Cells. Korean Journal of Materials Research 24,?305~309- 305~309 (2014). 

  14. K. Bothe, R. Hezel, J. Schmidt, Recombination-enhanced?formation of the metastable boron-oxygen complex in crystalline?silicon. Applied Physics Letters 83, 1125-1127 (2003). 

  15. T. Saitoh, A review of Japanese R&D for crystalline silicon?solar cells. 9, 81-86 (1999). 

  16. S. R. S. W. Glunz, J. Knobloch, W. Wettling, T. Abe, Comparison?of boron- and gallium-doped p-type Czochralski silicon for?photovoltaic application. Progress in Photovoltaic 7 (2000). 

  17. J. Schmidt, A. G. Aberle, R. J. C. R. o. t. T. S. I. P. S. C.-. Hezel,?Investigation of carrier lifetime instabilities in Cz-grown silicon.?13-18 (1997). 

  18. T. Schutz-Kuchly, J. Veirman, S. Dubois, D. R. Heslinga, Light-Induced-Degradation effects in boron-phosphorus compensated?n-type Czochralski silicon. Applied Physics Letters 96 (2010). 

  19. W. B. Henley, D. A. Ramappa, L. Jastrezbski, Detection of?copper contamination in silicon by surface photovoltage?diffusion length measurements. Applied Physics Letters 74,?278-280 (1999). 

  20. A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on?the long time behavior of the metastable boron-oxygen complex?in crystalline silicon. Progress in Photovoltaics: Research and?Applications 16, 135-140 (2008). 

  21. Bothe, K., Sinton, R., Schmidt, J., 2005. Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline?silicon. Progress in Photovoltaics: Research and Applications?13, 287-296. https://doi.org/10.1002/pip.586 

  22. J. Schmidt, K. Bothe, Structure and transformation of the?metastable boron- and oxygen-related defect center in crystalline?silicon. Physical Review B 69 (2004). 

  23. J. Schmidt, K. Bothe, R. Hezel, Oxygen-related minority-carrier?trapping centers in p-type Czochralski silicon. Applied Physics?Letters 80, 4395-4397 (2002). 

  24. K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon. Journal of?Applied Physics 99, 013701 (2006). 

  25. K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline?silicon. Progress in Photovoltaics: Research and Applications?13, 287-296 (2005). 

  26. S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling,?Degradation of carrier lifetime in Cz silicon solar cells. Solar?Energy Materials and Solar Cells 65, 219-229 (2001). 

  27. J. Adey, R. Jones, D. W. Palmer, P. R. Briddon, S. Oberg,?Degradation of Boron-Doped Czochralski-Grown Silicon Solar?Cells. Physical Review Letters 93, 055504 (2004). 

  28. H. M. B. Mao-Hua Du, Richard S.Crandall and S.B.Zhang, A?New Mechanism for Non-Radiative Recombination at Light-Induced Boron-Oxygen Complexes in Silicon. DOE solar energy?Technologies program review meeting, (2005). 

  29. J. Schmidt, A. Cuevas, Electronic properties of light-induced?recombination centers in boron-doped Czochralski silicon.?Journal of Applied Physics 86, 3175-3180 (1999). 

  30. S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe,?Comparison of boron- and gallium-doped p-type Czochralski?silicon for photovoltaic application. Progress in Photovoltaics:?Research and Applications 7, 463-469 (1999). 

  31. J. Zhao, A. Wang, M. A. Green, Performance degradation in?CZ(B) cells and improved stability high efficiency PERT and?PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and?CZ(Ga) substrates. Progress in Photovoltaics: Research and?Applications 8, 549-558 (2000). 

  32. G. Krugel, W. Wolke, J. Geilker, S. Rein, R. Preu, Impact of?Hydrogen Concentration on the Regeneration of Light Induced?Degradation. Energy Procedia 8, 47-51 (2011). 

  33. K. Ramspeck et al., in Proceedings of the 27th European?Photovoltaic Solar Energy Conference and Exhibition. (2012). 

  34. F. Kersten et al. (IEEE). 

  35. F. Kersten et al., Degradation of multi-crystalline silicon solar?cells and modules after illumination at elevated temperature.?Solar Energy Materials and Solar Cells 142, 83-86 (2015). 

  36. C. Chan et al., Modulation of Carrier-Induced Defect Kinetics?in Multi-Crystalline Silicon PERC Cells Through Dark Annealing.?Solar RRL 1, 1600028 (2017). 

  37. S. Liu et al., Impact of Dark Annealing on the Kinetics of Light- and Elevated-Temperature-Induced Degradation. IEEE Journal?of Photovoltaics 8, 1494-1502 (2018). 

  38. H. C. Sio et al., The Role of Dark Annealing in Light and?Elevated Temperature Induced Degradation in p-Type Mono-Like Silicon. IEEE Journal of Photovoltaics 10, 992-1000?(2020). 

  39. D. Sperber, A. Graf, D. Skorka, A. Herguth, G. Hahn,?Degradation of Surface Passivation on Crystalline Silicon and?Its Impact on Light-Induced Degradation Experiments. IEEE?Journal of Photovoltaics 7, 1627-1634 (2017).? 

  40. K. Petter et al., Dependence of LeTID on brick height for?different wafer suppliers with several resistivities and dopants.?6, 1-17 (2016). 

  41. C. E. Chan et al., Rapid Stabilization of High-Performance?Multicrystalline P-type Silicon PERC Cells. IEEE Journal of?Photovoltaics 6, 1473-1479 (2016). 

  42. A. Zuschlag, D. Skorka, G. Hahn, Degradation and regeneration?in mc-Si after different gettering steps. Progress in Photovoltaics:?Research and Applications 25, 545-552 (2017). 

  43. W. Liu et al., Light-induced activation of boron doping in?hydrogenated amorphous silicon for over 25% efficiency silicon?solar cells. Nature Energy 7, 427-437 (2022). 

  44. T. Niewelt et al., Light-induced activation and deactivation of?bulk defects in boron-doped float-zone silicon. Journal of?Applied Physics 121, 185702 (2017). 

  45. T. Niewelt, W. Kwapil, M. Selinger, A. Richter, M. C.?Schubert, Long-Term Stability of Aluminum Oxide Based?Surface Passivation Schemes Under Illumination at Elevated?Temperatures. IEEE Journal of Photovoltaics 7, 1197-1202?(2017). 

  46. U. Varshney et al., Evaluating the Impact of SiNx Thickness on?Lifetime Degradation in Silicon. IEEE Journal of Photovoltaics?9, 601-607 (2019). 

  47. S. Jafari, U. Varshney, B. Hoex, S. Meyer, D. Lausch, Understanding Light- and Elevated Temperature-Induced Degradation?in Silicon Wafers Using Hydrogen Effusion Mass Spectroscopy.?IEEE Journal of Photovoltaics 11, 1363-1369 (2021). 

  48. F. Kersten, J. Heitmann, J. W. Muller, Influence of Al2O3 and?SiNx Passivation Layers on LeTID. Energy Procedia 92,?828-832 (2016). 

  49. U. Varshney et al., Controlling Light- and Elevated-Temperature-Induced Degradation With Thin Film Barrier Layers. IEEE?Journal of Photovoltaics 10, 19-27 (2020). 

  50. D. S. Alona Otaegi), Andreas Schmid, Annika Zuschlag, Juan?Carlos Jimeno, Giso Hahn, INFLUENCE OF EMITTER?LAYERS ON LETID KINETICS IN MULTICRYSTALLINE?SILICON. EUPVSEC 35th, 293-297 (2018). 

  51. D. Bredemeier, D. C. Walter, J. Schmidt, Possible Candidates?for Impurities in mc-Si Wafers Responsible for Light-Induced?Lifetime Degradation and Regeneration. Solar RRL 2, 1700159?(2018). 

  52. T. Niewelt et al., Understanding the light-induced degradation?at elevated temperatures: Similarities between multicrystalline?and floatzone p-type silicon. Progress in Photovoltaics: Research?and Applications 26, 533-542 (2018). 

  53. A. C. N. Wenham et al. (IEEE). 

  54. J. Schmidt, D. Bredemeier, D. C. Walter, On the Defect Physics?Behind Light and Elevated Temperature-Induced Degradation?(LeTID) of Multicrystalline Silicon Solar Cells. IEEE Journal?of Photovoltaics 9, 1497-1503 (2019). 

  55. D. Chen et al., Hydrogen induced degradation: A possible?mechanism for light- and elevated temperature- induced?degradation in n-type silicon. Solar Energy Materials and Solar?Cells 185, 174-182 (2018). 

  56. C. Herring, N. M. Johnson, C. G. Van De Walle, Energy levels?of isolated interstitial hydrogen in silicon. Physical Review B?64, (2001). 

  57. E. Kobayashi et al., Light-induced performance increase of?silicon heterojunction solar cells. Applied Physics Letters 109,?153503 (2016). 

  58. E. Kobayashi et al., Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy?Materials and Solar Cells 173, 43-49 (2017). 

  59. L. Yang, X. Li, W. Zhang, Q. Yang, Q. Wang, On the Kinetics?of Light-Induced Enhancement Effect in Silicon Heterojunction?Solar Cells. physica status solidi (RRL) - Rapid Research Letters?17, 2200356 (2023). 

  60. Kim, S. M., et al., "Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped?Czochralski silicon solar cells." Applied Physics Letters 105(8):?083509. (2014). 

  61. A. Herguth and G. Hahn, Journal of Applied Physics?108,?114509 (2010).? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로